期刊文献+

关于Kadison算子型不等式的推广及其经济应用

Some Extensions and Economic Applications of the Kadison Type Inequality
下载PDF
导出
摘要 设A是Hilbert空间H上的严格正算子,Φ是保持单位元的正线性映射.利用已知的算子不等式对Kadison算子型不等式进行非对称形式的推广,得到更加广泛的一些算子不等式,同时给出其中两种特殊不等式的经济学解释,并指出在一定条件下,企业成本与利润、产出与利润之间存在对偶关系. Let A be a strictly positive operator on a Hilbert space , and Φ be a unit positive linear map. We discussed some asymmetrical extended forms of Kadison type inequality via some related theorems and explained two of these special inequalities from the perspective of economics. The result shows that there is a dual relationship between cost and profit going with output and profit.
作者 李笋
出处 《经济数学》 2015年第2期97-100,共4页 Journal of Quantitative Economics
关键词 正线性映射 Kadison算子型不等式 成本 利润 Postive linear map Kadison type inequality cost profit
  • 相关文献

参考文献13

  • 1M FUJII, Y O KIM, R NAKAMOTO. A characterization of convex functions and its application to operator monotone [unc tions[j]. Banach Journal of Mathematical Analysis, 2014, 8 (2): 118--123.
  • 2刘卫锋.三参数区间数集成算子及决策应用[J].经济数学,2014,31(4):96-101. 被引量:1
  • 3T ANDO. Concavity o{ certain maps on positive dei'inite matri ces and applications to hadamard produets[j]. Linear Algebra and its Applications, 1979, 26(4):203--241.
  • 4L ZHOU, H CHEN, J LIU. Generalized multiple averagingoperators and their applications to group decision making[J]. Group Decision and Negotiation, 2013, 22(2): 331--358.
  • 5R. KADISON. A generalized Schwarz inequality and algebraic invariants for operator algebras[J]. Annals of Mathematics, 1952, 56(3) :494--503.
  • 6J BOURIN, E RICHARD. An asymmetric Kadison's inequal ity[J]. Linear Algebra and its Applications, 2010, 433 (3): 499--510.
  • 7T FURUTA. Around choi inequalities for positive linear maps [J]. Linear Algebra and its Applications, 2011, 434(1) : 14-- 17.
  • 8J YUAN, G JI. Extensions of Kadisons inequality on positive linear maps[J]. Linear Algebra and its Applications, 2012, 436(3) :747--752.
  • 9M CHOI. Some assorted inequalities for positive linear map on C* -algebras[J]. Journal of Operator Theory, 1980, 4 (2): 271--285.
  • 10R BHATIA. Positive Definite Matrices[M]. Princeton: Prin- ceton University Press, 2007.

二级参考文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部