期刊文献+

正规矩阵特征值扰动的新估计

New Estimation of Perturbation Bounds for Eigenvalues of Normal Matrices
下载PDF
导出
摘要 设A,B均为正规矩阵,关于正规矩阵的特征值扰动,有结论 (n∑i=1︱μτ(i)-λi︱2)(1/2)≤n(1/2)‖E‖F,其中λi,μi分别为A,B的特征值.通过新的方法证明给出特征值扰动上界的新估计,并改进了以上结论. Let A,B be normal matrices,On the perturbation bounds for eigenvalues of normal matrices ,it have been proved that: ∑n i=1 μτ( i)-λi 2≤ n‖E‖F .where λi and μi are eigenvalues of AandB respec-tively.In this paper , we introduce a new method ,which improve the inequalities slightly .
出处 《湖北民族学院学报(自然科学版)》 CAS 2015年第2期159-160,共2页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 正规矩阵 特征值 扰动 normal matrix eigenvalue perturbation
  • 相关文献

参考文献7

  • 1孙继广.关于Wielant-Hoffman定理[J].计算数学,1983(5):208-212.
  • 2陈小山,黎稳.关于特征值的Hoffman-Wielandt型相对扰动界[J].应用数学学报,2003,26(3):396-401. 被引量:11
  • 3孙继广.关于正规矩阵特征值的扰动[J].计算数学,1984,6(3):334-336.
  • 4Hoffman A J, Wielandt H W.The variation of the spectrum of a normal matrix[ J] .Duke Mathematics Journal, 1953,20:37-39.
  • 5Sun J G.On the variation of the spectrum of a normal matrix [ J ].Linear Algebra and its Applications, 1996,246:215-223.
  • 6Sun J G.Matrix Perturbation Analysis [ M ]. ( 2nd edn).Beijing: Science Press,2001.
  • 7Eisenstat S C.A perturbation bound for the eigenvalues of a singular diagonalizable matrix [ J ].LinearAlgebra Appl, 2006,416:742-744.

二级参考文献7

  • 1Eisenstat G, Ilse G F Ipsen. Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds. SIAM J. Matrix Anal. Appl., 1998, 20(1): 149=-.158.
  • 2Elsener L, Friedland S. Singular Values, Doubly Stochastic Matrices and Applications. Linear Algebra Appl., 1995, 220:161-169.
  • 3Li R C. Relative Perturbation Theory (I): Eigenvalue and Singular Value Variations. SIAM J. Matrix Anal. Appl., 1998, 19:956-982.
  • 4Li R C. Relative Perturbation Theory (Ⅰ); Eigenvalue Variations. LAPACK working note 84, Computer Science Department, University of Tennessee, Knoxville, Revised May, 1997.
  • 5Horn R A, Johson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.
  • 6Ilse C F Ipsen. Relative Perturbation Results for Matrix Eigenvalues and Singular Values. Acta Numerica, 1998:151-201.
  • 7Zhang Z. On the Perturbation of Eigenvalues of a Non-defective Matrix. Math. Numer. Sinica, 1986,6(1): 106-108.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部