期刊文献+

Hadoop平台下MapReduce模型的数据分配策略研究 被引量:1

Study on Data Allocation Strategy of MapReduce Model on Hadoop Platform
下载PDF
导出
摘要 针对Hadoop开源云计算平台下MapReduce并行编程模型中间数据分配不均衡的问题,提出基于抽样的改进型MapReduce模型,即SMR(Sample MapReduce)模型.SMR模型采用MapReduce作业方式对各分块数据集进行并行抽样,基于抽样结果,利用LAB(leen and balance)均衡算法对Map端输出的中间数据进行均衡分配,以改善Reduce端处理数据负载不均衡问题.实验结果表明:改进型MapReduce模型可以有效减少作业运行时间,Reduce端输入数据达到负载均衡. The existing intermediate data allocation strategy of MapReduce parallel programming model on Hadoop open source computing platform was investigated , to consider the problem of partitioning imbal-ance .The improved MapReduce model ,SMR ( Sample-MapReduce ) was proposed .In order to provide a load-balanced partition scheme ,the MapReduce method was adopted to parallelly sample the data block , and LAB ( leen and balance ) balancing allocation strategy was used to distribute the output intermediate data of Map task .The results show that the improved MapReduces model significantly reduces the running time of the MapReduce job ,and the input data of reduce task achieve load balance .
作者 余基映 张腾
出处 《湖北民族学院学报(自然科学版)》 CAS 2015年第2期205-209,共5页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 云计算 MAPREDUCE模型 HADOOP 数据分配 cloud computing Hadoop MapReduce data distribution
  • 相关文献

参考文献20

二级参考文献281

  • 1崔杰,李陶深,兰红星.基于Hadoop的海量数据存储平台设计与开发[J].计算机研究与发展,2012,49(S1):12-18. 被引量:141
  • 2罗武庭.DJ—2可变矩形电子束曝光机的DMA驱动程序[J].LSI制造与测试,1989,10(4):20-26. 被引量:373
  • 3Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 4Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 5Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 6Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 7Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 8Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 9Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 10Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.

共引文献3896

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部