期刊文献+

基于神经网络的轴承故障预测模型 被引量:6

Prognostics Model of Bearing Fault Based on Neural Networks
下载PDF
导出
摘要 利用在故障预测领域广泛应用的神经网络模型,对轴承监测数据的特征提取与建模,挖掘出监测数据与剩余寿命间内在关联,从而对轴承剩余寿命做出评估。在轴承全寿命数据的实际实验中,证实了该模型的有效性。 In this paper, neural networks were used to estimate the remaining useful life of the bearings. Through the feature extraction and modeling process, the intrinsic connection between monitoring data and remaining useful life was dig out, so as to evaluate the residual life of bearing. In the experiment, the effectiveness of the model was verified.
出处 《海军航空工程学院学报》 2015年第3期281-285,共5页 Journal of Naval Aeronautical and Astronautical University
关键词 故障预测 神经网络 状态监测 fault prognostics neural networks state monitoring
  • 相关文献

参考文献21

  • 1YANG GUANGBIN. Life cycle reliability engineering [M]. Hoboken, NJ: John Wiley & Sons, Inc., 2007: 5-7.
  • 2U DINESH KUMAR. Reliability, maintenance and logis- tics support-a life cycle approach[M]. Holland: Kluwer Academic Publishers, 2000: 174-181.
  • 3GEORGE VACHTSEVANOS, FRANK L LEWIS, MI- CHAEL ROEMER, et al. Intelligent fault diagnosis and prognosis for engineering systems[M]. Hoboken, N J: John Wiley & Sons, Inc., 2006: 284-287.
  • 4LI C J, CHOI S. Spur gear root fatigue crack prognosis via crack diagnosis and fracture mechanics[C]//Proceed- ings of the 56th Meeting of the Society of Mechanical Failures Prevention Technology. 2002 : 311-320.
  • 5LI C J, LEE H. Gear fatigue crack prognosis using embed- ded model, gear dynamic model and fracture mechanics [J]. Mechanical systems and signal processing, 2005, 19 (4) :836-846.
  • 6OPPENHEIMER C H, LOPARO K A. Physically based diagnosis and prognosis of cracked rotor shafts[C]//Aero- Sense 2002. International Society for Optics and Photon- ics,2002: 122-132.
  • 7LI Y, BILLINGTON S, ZHANG C, et al. Adaptive prog- nostics for rolling element bearing condition[J]. Mechani- cal systems and signal processing, 1999,13 ( 1 ) : 103-113.
  • 8LI Y, KURFESS T R, LIANG S Y. Stochastic prognostics for rolling element bearings[J]. Mechanical Systems and Signal Processing, 2000,14(5 ) : 747-762.
  • 9ORSAGH R F, SHELDON J, KLENKE C J. Prognostics/ diagnostics for gas turbine engine bearings[C]//ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. American Society of Mechanical Engineers, 2003 : 159-167.
  • 10KACPRZYNSKI G J, SARLASHKAR A, ROEMER M J, et al. Predicting remaining life by fusing the physics of failure modeling with diagnostics[J]. Journal of Metals, 2004,56(3) :29-35.

二级参考文献7

  • 1吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-18. 被引量:84
  • 2Lam W, Alberto Maria Segre. A distributed learning algorithm for Bayesian inference networks[J]. TKDE, 2002, 14(1): 93- 105.
  • 3Somnath Deb, Krishna R Pattipati, Vijay Raghavan, et al. Multisignal flow graphs: a novel approach for system testability analysis and fault diagnosis[C]//New York, IEEE, 1994:361 - 373.
  • 4Ramoni M, Sebastiani P. Learning Bayesian networks from incomplete data[R]. KMi-TR-43, Knowledge Median Institute, The Open University, 1997.
  • 5Friedman N. The Bayesian structural EM algorithm[C]//Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI ' 98). San Francisco, CA, Morgan Kaufmann, 1998:571-578.
  • 6Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Leafing (Historical Archive ), 1992,9 : 309 - 347.
  • 7李俭川,胡茑庆,秦国军,温熙森.贝叶斯网络理论及其在设备故障诊断中的应用[J].中国机械工程,2003,14(10):896-900. 被引量:60

共引文献19

同被引文献39

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部