期刊文献+

时滞差分模型与剩余产量模型的应用比较--以南大西洋长鳍金枪鱼为例 被引量:4

Comparison of delay difference model and surplus production model applied to albacore( Thunnus alalunga) in the South Atlantic Ocean
下载PDF
导出
摘要 将剩余产量模型和时滞差分模型分别应用于南大西洋长鳍金枪鱼(Thunnus alalunga)渔业数据,结果表明,比起剩余产量模型,时滞差分模型拟合的单位捕捞努力渔获量(catch per unit effort,CPUE)曲线能够更好地捕捉到CPUE随着时间的波动。赤池信息量准则(Akaike information criterion,AIC)的结果显示,时滞差分模型比Schaefer模型的评估效果要好。时滞差分模型评估的最大可持续产量(maximum sustainable yield,MSY)中值为22 490 t,80%置信区间为21 756~23 408 t;剩余产量模型评估的MSY中值为27 520 t,80%的置信区间为26 116~28 959 t。生物学参考点的结果表明目标群体在1985年以前资源状态较好;1985年~2005年的20年里处于过度捕捞状态;2005年后资源状况得到改善,但仍需加强管理。比起剩余产量模型,时滞差分模型给出了更为有效且保守的评估结果。 We applied surplus production model and delay difference model to analyze the data of the southern Atlantic albacore ( Thunnus alalunga) stock. Results show that the delay difference model captured annual fluctuation of catch per unit effort ( CPUE ) better than the Schaefer model. Akaike information criterion (AIC) also reveals that delay difference model performed better. We cal- culated an 80% percentile confidence interval of maximum sustainable yield (MSY) of 21 756 - 23 408 t ( median 22 490 t) and 26 116-28 959 t (median 27 520 t) by delay difference model and Schaefer model, respectively. Results of biological reference points show that the southern Atlantic albacore stock was in a good state before 1985 but had been overfished from 1985 to 2005 ; after that, it was rebuilt gradually but must be taken care of. The delay difference model gave more effective and conservative results than the surplus production model.
出处 《南方水产科学》 CAS CSCD 北大核心 2015年第3期1-6,共6页 South China Fisheries Science
基金 农业部财政重大专项(NFZX2013) 农业部海洋渔业资源调查与探捕(近海)项目(2014CB441505) 中央级公益性科研院所基本科研业务费专项资金(中国水产科学研究院南海水产研究所)资助项目(2014TS23,2014TS17)
关键词 剩余产量模型 时滞差分模型 长鳍金枪鱼 最大可持续产量 生物学参考点 surplus production model delay difference model Thunnus alalunga maximum sustainable yield biological reference points
  • 相关文献

参考文献22

  • 1QUINN T J. Ruminations on the development and future of popula- tion dynamics models in fisheries[ J]. Nat Res Model, 2003, 16 (4) : 341 -392.
  • 2HILBORN R, WALTERS C. Quantitative fisheries stock assess- ment: choice, dynamics, and uncertainty [ M ]. New York: Chapman and Hall, 1992:67 -69.
  • 3DERISO R B. Harvesting strategies and parameter estimation for an age-structured model[J]. Can J Fish Aquat Sci, 1980, 37(2): 268 - 282.
  • 4SCHNUTE J. A general theory for analysis of catch and effort data [J]. Can J Fish Aquat Sei, 1985, 42(3) : 414 -429.
  • 5官文江,田思泉,朱江峰,陈新军.渔业资源评估模型的研究现状与展望[J].中国水产科学,2013,20(5):1112-1120. 被引量:54
  • 6HADDON M. Modelling and quantitative methods in fisheries [M]. 2nd Edition. New York: Chapman and Hall, 2011:285 -300.
  • 7PUNT A E, HUANG T, MAUNDER M N. Review of integrated size-structured models for stock assessment of hard-to-age crustacean and mollusc species[J]. ICES J Mar Sci, 2013, 70(1): 16- 33.
  • 8ICCAT. Report of the2011 ICCAT south Atlantic and Mediterranean albacore stock assessment sessions [ J]. ICCAT Col Vol Sci Pap, 2012, 68(2): 387-491.
  • 9PALLARE P, RESTREPO V. Use of delay-difference models to as- sess the India bigeye stock[J]. IOCT Proceedings, 2003, 6:148- 150.
  • 10樊伟,周甦芳,沈建华.大西洋金枪鱼延绳钓主要渔获种类及其分布[J].海洋渔业,2003,25(3):130-135. 被引量:8

二级参考文献82

  • 1ICCAT Report of the Standing Committee on Research & Statistics(SCRS) MadTid, Spain, 2002.
  • 2Maury O, Gascuel D, Fonteneau A L,Hierarchical Interpretation of Non - Linear Relationships Linking Yellowfin Tuna ( Thunnus albacares ) to the Environrrtent in the Atlantic Ocean. Can. J.Fish. Aquat. Sci 58:458-469(2001).
  • 3李纲,陈新军.东黄海鲐鱼资源评估与管理决策研究[M].北京:科学出版社,2011.
  • 4National Research Council (NRC). Sustaining marine fisher- ies [M]. Washington D C: National Academy Press, 1998.
  • 5Punt A E, Huang T, Maunder M N. Review of integrated size-structured models for stock assessment of hard-to-age crustacean and mollusc species[J]. ICES J Mar Sci, 2013, 70(1): 16-33.
  • 6Prager M H. From the golden age to the new industrial age: fishery modeling in the early 21st century[J]. Nat Res Model, 2003, 16(4): 477-489.
  • 7Fournier D A, Skaug H J, Ancheta J, et al. AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models [J]. Optim Method Sottw, 2012, 27(2): 233-249.
  • 8Hilborn R, Waiters C. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty[M]. New York: Chapman and Hall, 1992: 67-69.
  • 9Quinn II T. Ruminations on the development and future of population dynamics models in fisheries[J]. Nat Res Model, 2003, 16(4): 341-392.
  • 10Hampton J, Foumier D. A Spatially disaggregated, length- based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean [J]. Mar Freshw Res, 2001, 52: 937-963.

共引文献59

同被引文献24

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部