期刊文献+

MIMO系统的迭代降维并行检测算法

Iterative Dimensionality-Reduction Parallel Detection Algorithm for MIMO System
下载PDF
导出
摘要 针对传统多输入多输出(MIMO)系统检测算法先检测的子流分集度较低以及错误传播的问题,提出了一种改进的迭代降维并行检测算法.该算法在每次迭代内对第1个子流遍历取值,其余子流采用排序连续干扰消除(OSIC)算法进行检测,在每次迭代结束时仅输出分集度最高的首子流的估计值,在迭代间通过干扰消除降低待检测子流的维度.仿真结果表明:该算法能以较低的复杂度代价获得逼近最大似然检测算法的差错概率性能;在4×4、QPSK调制的MIMO系统中,相对于传统的OSIC算法,文中算法在误比特率为10-3时获得了9.3 d B的增益. An improved iterative dimensionality-reduction parallel detection algorithm is proposed to mitigate the effects of the low diversity gain of the first detective sub-streams and the error propagation in traditional Multiple Input Multiple Output (MIMO) detection algorithm. In each iteration of the algorithm, the first sub- stream is found by exhaustive search while other sub-streams are detected in parallel through ordered successive interference cancellation (OSIC), and only the estimates of the first sub-stream with the highest diversity order can be obtained at the end of each iteration. Furthermore, between two different iterations, interference cancellation is employed to reduce the dimension of sub-streams. Simulated results indicate that, only with marginal complexity cost, the proposed algorithm helps obtain BER (Bit Error Rate) performance approaching maximum likelihood detection algorithm. Particularly, in a 4×4 QPSK modulation MIMO system, the performance gain of the proposed algorithm over OSIC is 9.3 dB at a BER of 10^-3.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期47-52,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"973"计划项目(2012CB316100) 国家自然科学基金资助项目(61001207 61101144 61101145) 国家"111"计划项目(B08038)~~
关键词 MIMO系统 错误传播 并行检测 降维 MIMO systems error propagation parallel detection dimensional reduction
  • 相关文献

参考文献15

  • 1Wolniansky P W, Foschini G J, Golden G D, et al. V- BLAST:an architecture for realizing very high data rates over the rich- scattering wireless channel [ C ]//Procee- dings of 1998 URSI International Symposium on Signals, Systems, and Electronics. Pisa : IEEE, 1998:295-300.
  • 2Hassibi B ,Vikalo H. On the sphere-decoding algorithm I expected complexity [ J ]. IEEE Transactions on Signal Processing,2005,53 ( 8 ) :2806-2818.
  • 3Guo Z, Nilsson P. Algorithm and implementation of the K- best sphere decoding for MIMO detection [ J ] . IEEE Journal on Selected Areas in Comnmnications, 2006,24 ( 3 ) :491-503.
  • 4Li Y, Luo Z Q. Parallel detection for V-BLAST system [ C ]//Proceedings of IEEE International Conference on Communications. New York : IEEE ,2002:340-344.
  • 5Wang W, Jin R, Geng J. hnproved partial parallel muhi- stage detection for V-BLAST systems [ J ]. Electronics Letters ,2007,43 ( 1 ) :43-44.
  • 6Wu D Y, Van L D. Efficient detection algorithms for MI- MO communication systems [ J]. Journal of Signal Pro- cessing Systems ,2011,2 ( 3 ) :427-442.
  • 7Radii D, Leib H. Interference cancellation based detection for V-BLAST with diversity maximizing channel partition [ J]. IEEE Journal of Selected Topics in Signal Process- ing,2009,3 (6) : 1000-1015.
  • 8Xiong C,Zhang X. Parallel detection algorithm with selec- tive interference cancellation for V-BLAST systems [ C]// Proceedings of 2009 IEEE International Confe-rence on Communications. Dresden : IEEE ,2009 : 1-5.
  • 9Fu H,Zhang Y, Ma H,et al. A parallel interference can- cellation detection algorithm for VBLAST-OFDM system [C]//Proceedings of 2010 International Conference on Intelligent Computing and Integrated Systems. Gandhi-na- gar: IEEE ,2010:858-861.
  • 10Yang L, Ming C, Cheng S, et al. Combined maximum likelihood and ordered successive interference cancella- tion grouped detection algorithm for muhistream MIMO [C]//Proceedings of 2004 IEEE Eighth International Symposium on Spread Spectrum Techniques and Appli- cations. Sydney : IEEE ,2004:250-254.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部