期刊文献+

基于时间序列手势轮廓模型的动态手势识别 被引量:7

Dynamic Gesture Recognition Based on Gesture Contour Model of Time Series
下载PDF
导出
摘要 针对动态手势在时间尺度上的多变性和复杂性,提出了一种动态手势识别框架.该框架利用时间序列上提取的手势轮廓构造动态手势轮廓图像,获得不同动态手势在不同时间尺度下其轮廓图像的均值图像和方差图像,并将这些图像用于构成动态手势轮廓模型库,在此模型库基础上,利用相关信息方法和改进的动态时间规整方法完成动态手势的识别.实验结果表明,文中提出的动态手势轮廓模型对不同时间尺度的动态手势具有较强的鲁棒性,改进的动态时间规整方法较传统方法具有更高的识别率. Proposed in this paper is a new dynamic gesture recognition framework to solve time-scale variability and complexity of dynamic gestures. This framework constitutes a dynamic gesture contour image by using the gesture contour in time series, and calculates the mean and variance images of gray-scale images in different time scales. Furthermore, these mean and variance images are organized into a dynamic gesture contour model library. On this basis, dynamic gestures are recognized by using correlated information method and improved dynamic time warping method. Experimental results show that the proposed dynamic gesture contour model is of strong robustness to the dynamic gestures in various time scales, and that the improved dynamic time warping method helps obtain recognition rate higher than that of the traditional method.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期140-146,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 上海科学与技术委员会攻关研究项目(11511503300)~~
关键词 手势识别 时间序列 轮廓模型 相关信息法 动态时间规整 gesture recognition time series contour model correlated information method dynamic time warping
  • 相关文献

参考文献14

  • 1Khan Rehanullan, Hanbury Allan, Stottinger Julian, et al. Color based skirt classification [J ] .Pattern Recognition Letters,2012,33 (2) : 157-163.
  • 2Sun Hung-Ming.Skin detection for single images using dynamic skin color modeling [J ].Pattern Recognition, 2010,43 (4) : 1413-1420.
  • 3Molina Javier,Escudero-Vifiolo Marcos, Signoriello Aless- andro,et al.Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models [J].Machine Vision and Applica- tions,2011,24(1 ) : 187-204.
  • 4Fan Lixin.A feature-based object tracking method using online template switching and feature adaptation [C]// Proceedings of the 6th International Conference on Image and Graphics.Hefei : ICIG, 2011 : 707-713.
  • 5Liu Yu, Zhou Wei, Yin Huagang, et al.Tracking based on SURF and superpixel [ C ]//Proceedings of the 6th Inter- national Conference on Image and Graphics.Hefei:IEEE, 2011:714-719.
  • 6Wang W H A,Tung C L.Dynamic hand gesture recognition using hierarchical dynamic Bayesian networks through low-level image processing [C]//Proceedings of the Se- venth International Conference on Machine Learning and Cybemetics.Kunming : IEEE, 2008 : 3247-3253.
  • 7Sgouropoulos Kyriakos, Stergiopoulou Ekaterini, Papa- markos Nikos.A dynamic gesture and posture recognition system [J].Joumal of Intelligent and Robotic Systems : Theory and Applications, 2014,76 (2) : 283-296.
  • 8Neumann GerHard,Maass Wolfgang, Peters Jan.Learning complex motions by sequencing simpler motion tem- plates [C ]//Proceedings of the 26th Annual International Conference on Machine Learning.New York: ACM, 2009:753-760.
  • 9王西颖,戴国忠,张习文,张凤军.基于HMM-FNN模型的复杂动态手势识别[J].软件学报,2008,19(9):2302-2312. 被引量:40
  • 10Itakura F.Minimum prediction residual principle applied to speech recognition, acoustics [J].IEEE Transactions on Speech and Signal Processing, 1975,23 ( 1 ) : 67-72.

二级参考文献3

共引文献39

同被引文献52

  • 1王修晖,鲍虎军.基于自适应遗传算法的手势识别[J].计算机辅助设计与图形学学报,2007,19(8):1056-1062. 被引量:16
  • 2Haritaoglu I, Harwood D, Davis L S. W4:Real-time surveillance of people and their activities[J] . IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2000,22 (8) : 809-830.
  • 3Huang Rui,Liu Qingshan, Lu Hanqing,et al. Solving the small sample size problem of LDA[C]//16th International Confer- ence on Pattern Recognition. Quebec,Canada: IEEE Computer Society,2002:29-32.
  • 4Kyperountas M. Tefas A,Pitas I. Weighted piecewise LDA for solving the small sample size problem in face verification[J]. IEEE Transactions on Neural Networks, 2007,18 (2) 506-519.
  • 5Marilly E, Gonguet A, Martinot O, et al. Gesture interactions with video: from algorithms to user evaluation [ J ]. Bell Labs Technical Journal, 2013, 17(4): 103-118.
  • 6Liu Y, Zhang P. An automatic hand gesture recognition system based on Viola-Jones method and svms [ C ]//Proceedings of the 2009 Second International Workshop on Computer Science and Engineering. Qingdao, China: IEEE, 2009: 72-76.
  • 7Chen Q, Georganas N D, Petriu E M. Hand gesture recognition using Haar-Like features and a stochastic context-free grammar [ J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8) : 1562-1571.
  • 8Su M C. A fuzzy rule-based approach to spatio-temporal hand gesture recognition [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2000, 30(2) : 276-281.
  • 9Zhao J L, Chen T D. An approach to dynamic gesture recognition for real-time interaction[ C ]//Proceedings of the Sixth Internal tional Symposium on Neural Networks. Berlin Heidelberg: Spring- er, 2009: 369-377.
  • 10Yao Y, Fu Y. Contour model-based hand-gesture recognition using the Kinect sensor[ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 ( 11 ) : 1935-1944.

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部