期刊文献+

高斯和估计Kalman滤波在多平台空战对抗评估数据预处理中的应用 被引量:2

Pre-processing of Multi-platform Air Combat Rivalry Evaluation Based on Gaussian Sum Estimate Kalman Filter
下载PDF
导出
摘要 针对多平台空战对抗评估数据预处理中的过程积累误差问题进行研究。通过构建多平台空战对抗系统,分析不同平台间实时数据交互关系和相应的数据类型,采用最小二乘法和坐标变换实现不同平台间的时空配准,并对多平台空战对抗评估过程进行误差分析,将其状态误差和观测误差表示为高斯和形式,并选用Kalman滤波方法对过程积累误差进行滤波。实例仿真实验结果表明:经过滤波后的估计轨迹与真实轨迹之间的拟合效果较好,进一步完善了原有多平台空战对抗数据预处理过程。 With the widely application of the Multi-platform and Multi-sensor in the Air Combat Rivalry E-valuation,the accomplishment of the better data Pre-processing of Multi-platform Air Combat Rivalry E-valuation will play a vital role in route selection、track fusion、evaluation and prediction of real-time and afterwards air combat training.Through building multi-platform air combat training evaluation system, the measuring data from varied platforms is analyzed.The Least Square method and coordinate transformation are adopted to realize the time and space registration between varied platforms,the process accu-mulated error is analyzed and disposed based on the Gaussian Sum Estimate Kalman Filter algorithm.Sim-ulation analysis is done,the result shows that the matched curve between measurement track and real track is good in fitting result after filter processing,and the purpose of perfecting the Pre-processing of multi-platform air combat rivalry evaluation is achieved.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2015年第3期25-29,共5页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 多平台空战对抗评估 数据预处理 时空配准 过程积累误差 高斯和估计Kalman滤波 multi-platform air combat rivalry evaluation data pre-processing time and space registration process accumulated error Gaussian Sum Estimate Kalman Filter
  • 相关文献

参考文献6

二级参考文献60

  • 1丁锋,杨健,余志锋.美军C^4KISR系统的体系结构及发展展望[J].电光与控制,2005,12(1):1-4. 被引量:11
  • 2谢川,倪世宏,张宗麟.一种缺失飞行参数预处理的新方法[J].计算机仿真,2005,22(4):27-31. 被引量:9
  • 3Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans.on Signal Processing,2002,50(2):174-188.
  • 4Valiviita S,Ovaska S J.Vainio O.Polynomial predictive filtering in control instrumentation:a review[J].IEEE Trans.on Industrial Electronics,1999,46(5):876-888.
  • 5Nordlund P J.Sequential Monte Carlo filters and integrated navigation[D].Linkoping:Swedish Linkoping University,2002.
  • 6Bergman N.Recursive Bayesian estimation navigation and tracking applications[D].Linkoping:Swedish Link ping University,1999.
  • 7秦永元,张洪钺,汪叔华.卡尔曼滤波与组和导航原理[M].西安:西安工业大学出版社,2004.
  • 8Bar-Shalom Y,Ii X R.Multitarget multisensor tracking:principles and techniques[M].YBS Publishing.1995.
  • 9Gordon N J,Salmond D J.Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proc.of Radar and Signal,1993,140(2):107-113.
  • 10Julier S J.Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[C] // The 11th International Symposium on Aerospace/Defence Sensing,Simulation and Controls,1997:182-193.

共引文献38

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部