期刊文献+

一维Fokker-Planck方程的有限体积法求解及其在中性束注入加热中的应用

One-dimensional Fokker-Planck Equation Solving by Finite Volume Method and Its Application in Neutral Beam Injection Heating
下载PDF
导出
摘要 采用有限体积法数值求解一维Fokker-Planck方程,通过模拟电子自碰撞过程进行程序校验。研究表明,有限体积法能高效求解Fokker-Planck方程,能确保分布函数的非负性和粒子数密度守恒,同时计算程序能有效克服传统求解方法中出现的分布函数对麦克斯韦分布的过冲现象。模拟了HL-2A装置在中性束注入加热等离子体过程中,离子分布函数和温度随时间的演化情况。结果表明,随着中性束的注入,离子分布函数出现非麦克斯韦化,离子温度迅速增加后稳定;计算结果和实验结果符合较好。进一步讨论束能量和功率的影响,随束能量和功率的增加,等离子体离子温度均升高,离子温度随束能量的增加升高的幅值较大,而随束功率的增加升高的幅值较小。 The one‐dimensional Fokker‐Planck equation was solved by finite volume method .The reliability of program was verified by simulation of electron self‐collision . T he results show that the numerical scheme assures positive distribution function and particle number conservation .It is an effective method of solution for Fokker‐Planck equation .And the overshoot of the Maxwell distribution that arouse from Fokker‐Planck equation solving by traditional numerical method was eliminated .Furthermore , the evolutions of ion distribution function and temperature were simulated in neutral beam injection heating on the HL‐2A .The results show that the ion distribution func‐tion tends to non‐Maxwell distribution as the neutral beam injects ,and the ion tempera‐ture rises rapidly and then reaches stability .The effects of beam power and energy on the ion temperature were investigated ,and the results show that the ion temperature increases with the beam power and energy .The change is more obvious by increasing beam energy than power .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第6期966-971,共6页 Atomic Energy Science and Technology
基金 国际热核聚变实验堆计划专项资助项目(2014GB108002) 国家自然科学基金资助项目(11375085) 湖南省核聚变与等离子体物理创新团队建设资助项目(NHXTD03) 衡阳市科技局资助项目(2013KJ24) 南华大学研究生科研创新资助项目(2014XCX08 2014XCX02)
关键词 有限体积法 FOKKER-PLANCK方程 分布函数演化 中性束注入加热 finite volume method Fokker-Planck equation evolution of distribution function neutral beam injection heating
  • 相关文献

参考文献17

  • 1HU L Q, KURIYAMA M, AKINO N, et ah Beam divergence and power loading on the beam- line components of the negative-ion based NBI system for JT-60U[J]. Fusion Engineering and Design, 2001, 54(2): 321-330.
  • 2AKERS R J, APPEL L C, CAROLAN P G, et a[. Neutral beam heating in the START spherical Tokamak[J]. Nucl Fusion, 2002, 42(2): 122- 135.
  • 3CIRIC D, BROWN D P D, CHALLIS C D, et al. Overview of the JET neutral beam enhance- ment project[J]. Fusion Engineering and Design,2007, 82(5-14): 610-618.
  • 4ZOHM H, ADAMEK J, ANGIONI C, et al. Overview of ASDEX upgrade results[J]. Nucl Fusion, 2009, 49(10): 104009.
  • 5DUAN X R, DONGJ Q, YAN L W, et al. Pre- liminary results of ELMy H-mode experiments on the HL-2A Tokamak[J]. Nucl Fusion, 2010, 50(9) : 095011.
  • 6XIAO W W, ZOU L N, DING X T, et al. Ob- servation of a spontaneous particle-transport bar- rier in the HL-2A Tokamak[J]. Phys Rev Lett, 2010, 104: 215001.
  • 7CHENG J, DONGJ Q, ITOH K, etal. Dynam- ics of low-intermediate-high con{inement transi- tion in toroidal plasma[J]. Phys Rev Lett, 2013, 110: 265002.
  • 8DUAN X R, DING X T, DONG J Q, et al. An overview of recent HL-2A experiments[J]. Nucl Fusion, 2013, 53(10): 104009.
  • 9严龙文,段旭如,丁玄同,等.HL-2A装置物理实验研究的进展[c]//第十六届全国等离子体科学技术会议.上海:复旦大学,2013.
  • 10MIRIN A A, McCOY M G, TOMACCHKE G P, et al. FPPAC88: A two-dimension multispe- cies nonlinear Fokker-Planck package[J]. Com- put Phys Comm, 1988, 51(3): 373-380.

二级参考文献19

  • 1Huba J D.NRL Plasma Formulary[M].Washington,D.C:Naval Research Laboratory,2004.
  • 2Shkrarofsky I P,Johnston T W,Backynski M P.The particle kinetics of plasmas[M].Netherlands:Addison-Wesley,1966.
  • 3Killeen J,Marx K D.The solution of the Fokker-Planck equation for a mirror-confined plasma[M]/Alder B,Fernback S,Rothenberg M,eds.Methods in Computational Physics.New York:Academic,1970:421-489.
  • 4Killeen J,Mirin A A,Rensink M E.The solution of the kinetic equations for a multispecies plasma[M]//Alder B,Fernback S,Rothenberg M,eds.Methods in Computational Physics.New York:Academic,1976:389-431.
  • 5McCoy M G,Mirin A A,Kileen J.FPPAC:A two-dimensional multispecies nonlinear Fokker-Planck package[J].Comput Phys Comm,1981,24:37-61.
  • 6Mirin A A,McCoy M G,Tomacchke G P,Killeen J.FPPAC88:A two-dimensional multispeeies nonlinear Fokker-Planck package[J].Comput Phys Comm,1988,51:373-380.
  • 7Shoucri M,Shkarofsky I.A fast 2D Fokker-Planck solver with synergetic effects[J].Comput Phys Commun,1994,82:287-305.
  • 8Shoucri M,Shkarofsky I.A Fokker-Planck code for the electron-cyclotron current drive and electron-cyclotron/lower hybrid current drive synergy[R].CCFM Report 467,1996.
  • 9Peysson Y,Shoucri M.An approximate factorization procedure for solving nine-point elliptic difference equations:Application for a fast 2-D relativistic Fokker-Planck solver[J].Comput Phys Commun,1998,109:55-80.
  • 10Sunahara A,Delettrez J A,Steeckl C,Short R W,Skupsky S.Time-dependent electron thermal flux inhibition in direct-drive laser implosions[J].Phys Rev Lett,2004,91:095003.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部