期刊文献+

自治混沌系统的动力学行为及计算机仿真 被引量:5

原文传递
导出
摘要 构造了一类新的含有包含绝对值的非线性项的三维二次自治混沌系统,根据稳定性理论分析了系统的定性行为,并借助Matlab软件进行了数值模拟,得到了系统的部分动力学特性。通过Lyapunov指数谱讨论了系统参数对系统混沌特性的影响,结果表明随着系统参数的变化系统平衡点的稳定性发生变化。进一步通过分岔图、Poincare截面图以及相图验证了上述结论。
出处 《广西物理》 2015年第1期32-37,共6页 Guangxi Physics
基金 南阳市科学技术发展规划项目(2013GG048)
  • 相关文献

参考文献15

  • 1E.N. Lorenz. Deterministic non-periods flows[J]. J. Atoms. Sci. 1963, 20(2): 130-141.
  • 2Guan-rong CHEN, Tetsushi UETA. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7) : 1465-1466.
  • 3Jin-hu LU, Guan-rong Chen. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3) : 659-661.
  • 4Chong-xin Liu, Tao Liu, Ling Liu, Kai Liu. A new chaotic attractor Chaos[J]. Chaos, Solitons and Fractals, 2004, (22) : 1031-1038.
  • 5Chong-xin Liu, Ling Liu, Tao Liu, et al. A new butterfly-shaped attractor of Lorenz-like system[J]. Chaos, Solitons and Fractals, 2006, (28): 1197-1203.
  • 6Chong-xin Liu, Ling Liu, Tao Liu. A novel three-dimensional autonomous chaos system[J]. Chaos, Solitons and Fractals, 2009, (39): 1950-1958.
  • 7Chong-xin Liu. A noveal chaotic dynamical system[J]. Far east journal of dynamical systems. 2006,8(1): 51-58.
  • 8Chong-xin Liu. h new hyperchaotic system[J]. Far east journal of dynamical systems. 2006, 8(2): 231-238.
  • 9Chong-xin Liu, Zuo-peng Zhang, Jun-jie Lu. A new three-dimensional autonomous chaotic system[J]. Far East J. Appl. Math., 2007, 26(2): 149-158.
  • 10Bao Bocheng,Liu Zhong,Xu Jianping.New chaotic system and its hyperchaos generation[J].Journal of Systems Engineering and Electronics,2009,20(6):1179-1187. 被引量:34

二级参考文献28

共引文献66

同被引文献43

  • 1王贺元,鞠春贤.四模Lorenz系统的动力学行为及其数值模拟[J].高等学校计算数学学报,2010,32(2):99-105. 被引量:12
  • 2Lorenz E N. Deterministic non - periods flows [J]. Journal of Atmosphere Science, 1963, 20(2) :130-141.
  • 3Guan rang CHEN, Tetsushi UETA. Yet another chaotic attract- or[J]. International Journal of Bifurcation and Chaos, 1999,9(7) :1465 - 1466.
  • 4Jin hu La, Guan rang Cben. A new chaotic attractor coined [J]. International Journal of Bifurcation and Chaos, 2002, 12(3) : 659 - 661.
  • 5Jin hu La, Guan rong Chen, Dai zhan CHENG, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002,12(12) :2917 -2926.
  • 6Chang xin Liu, Tao Liu, Ling Liu. A new chaotic attractor Cha- os[J]. Chaos, Solitons and Fractols, 2004, 22:1031 - 1038.
  • 7Chong xin Liu, Ling Liu, Tao Liu. A novel three - dimensional autonomous chaos system[J]. Chaos, Solitans and Fractals, 2009, 39 : 1950 - 1958.
  • 8J C Sprott. A dunamica] system with a strange attractor and in- variant toil[J]. Physics Ltters A, 2014,378 : 1361 - 1363.
  • 9Lorenz E. N. Deterministic non-Deriods flows[J]. Journal of AtmosDhere Science, 1963, 20(2):130-141. f.
  • 10Guan-rong CHEN, Tetsushi UETA. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999,9(?): 1465-1466.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部