期刊文献+

基于共犯网络结构的有组织犯罪集团挖掘方法

Ming method of organized crime based on co-offending networks
下载PDF
导出
摘要 有组织犯罪集团挖掘是目前数据挖掘技术研究的热点,利用共犯网络结构提出一种新的有组织犯罪集团挖掘的方法。该方法能从大型真实犯罪数据集获取有组织犯罪集团信息,提高了有组织犯罪集团检测效率。实验结果表明,该方法能分析出有组织犯罪集团特征演变轨迹,对挖掘有组织犯罪集团证据可行、有效。 Organized' crime group mining is a hot spot in the current data mining technology, so this paper proposed a new method of organized crime group mining using co-offending networks analysis methods. The method can improve the efficiency of the organized crime detection for extracting information from large real-life crime datasets. Experiments show that this method can analyze the evolution characteristics of organized crime group, effectively excavate organized crime evidence.
出处 《微型机与应用》 2015年第12期17-19,共3页 Microcomputer & Its Applications
基金 国家高新技术研究发展计划(863计划)(2012AA112312) 教育部高等学校博士学科点专项科研基金(20110161120006) 湖南省教育规划课题阶段性成果(警察信息素质教育理念及实战能力培养研究XJK013CXX012) 湖南省公安厅科研基金(湘公科信明电(2013)56号)
关键词 数据挖掘 共犯网络 有组织犯罪集团 检测效率 data mining co-offending networks organized crime groups detection efficiency
  • 相关文献

参考文献9

  • 1MCGLOIN J M, NGUYEN H. The importance of studying co-offending networks for criminological theory and policy[C]. Proceedings of Third Annual Illicit Networks Workshop, Montreal, Qu6bec, October 2011.
  • 2KIM M S, HAN J W. A particle-and-density based evolu- tionary clustering method for dynamic networks[J]. Proceed- ings of Very Large Data Base Endowment, 2009, 2 (1): 622-633.
  • 3KIM K, MCKAY R, MOON B R. Muhiobjective evolution- ary algorithms for dynamic social network clustering [C]. Proceedings of the 12th Conf.Genetic and Evolutionary Computation, 2010:1179-1186.
  • 4SATULURI V, PARTHASARATHY S. Scalable graph clus- tering using stochastic flows: applications to community dis- covery[C]. KDD, Paris, France, 2009:737-746.
  • 5INOKUCHI A, WASHIO T. Mining frequent graph se- quence patterns induced by vertices [C]. Proceedings of the SIAM Int'l Conference on Data Mining, 2010:466-477.
  • 6MICHELLE G, NEWMAN M E J. Community structure in social and biological networks [J]. PNAS, 2002,99(12): 7821-7826.
  • 7TAYEBI M A, GLASSER U. Organized crime structures in co-offending networks [C]. Proceedings of International Con- ference on Social Computing and its Applications, Sydney, Australia, Dec. 2011.
  • 8NGUYEN N P,DINH T N,Ying Xuan, et al. Adaptive al- gorithms for detecting community structure in dynamic so- cial networks [C]. Shanghai: Proceedings of IEEE Infocom' 11, 2011:2282-2290.
  • 9BACKSTROM L, HUTYENLOCHER D, KLEINBERG J, et al. Group formation in large social networks: membership, growth and evolution [C]. Proceedings of the KDD, 2006: 44-54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部