期刊文献+

基于压缩感知的单样本人脸识别

Compressive sensing-based face recognition for single sample
下载PDF
导出
摘要 提出一种基于压缩感知的单样本人脸识别方法,通过局部邻域嵌入非线性降维和稀疏系数的方法产生冗余样本,则新样本包含了多种姿态和多种表情。将所有的新样本作为训练样本,运用改进后的稀疏表征分类算法进行人脸图像的识别。在单样本情况下,基于ORL人脸库和FERET人脸库的实验证明,该方法比原稀疏表征方法在识别率上分别提高了15.53%和7.67%。与RSRC、SSRC、DMMA、I-DMMA等方法相比,该方法同样具有良好的识别性能。 This paper proposes a kind of face recognition method with one training image per person, which is based on compressed sensing. There are two methods nonlinear dimensionality reduction by locally linear embedding and sparse coefficients, by witch redundant samples can generate. These new samples with multi-expressive and multi-gesture can be treated as training samples. Finally, the improved SRC algorithm can be applied to face recognition. Experiments on the well-known ORL face database and FERET face database show that the proposed method is respectively about 15.53% and 7.67%, more accurate than original SRC method in the context of single sample face recognition problem. In addition, extensive experimentation reported in this paper suggests that the proposed method achieves higher recognition rate than RSRC, SSRC, DMMA, and I-DMMA.
作者 徐志京 叶丽
出处 《微型机与应用》 2015年第12期35-37,41,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(61404083) 航空科学基金(2013ZC15005) 上海海事大学校基金(20120108)
关键词 人脸识别 单样本 稀疏表征分类 局部邻域嵌入非线性降维 face recognition single sample sparse representation-based classification(SRC) nonlinear dimensionality reduction
  • 相关文献

参考文献8

  • 1Wang Jie, PLATANIOTIS K N, Lu Juwei, et al. On solving the face recognition problem with one training sample per subject[J].Pattern Recognition, 2006,39(9):1746-1762.
  • 2WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210-227.
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4马瑞,王家廞,宋亦旭.基于局部线性嵌入(LLE)非线性降维的多流形学习[J].清华大学学报(自然科学版),2008,48(4):582-585. 被引量:48
  • 5Chang Xueping, Zheng Zhonglong, Duan Xiaohui, et al. Sparse representation-based face recognition for one train- ing image per person [A]. Advanced Intelligent Computing Theories and Applications [C]. Berlin Heidelberg: Springer, 2010:407-414.
  • 6单桂军.基于虚拟样本扩张法的单样本人脸识别算法研究[J].科学技术与工程,2013,21(14):3908-3911. 被引量:6
  • 7Lu Jiwen, Tan Yap-peng, Wang Gang. Discriminative mul- timanifold analysis for face recognition from a single train- ing sample per person [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 1 ) : 39-51.
  • 8NABIPOUR M, AGHAGOLZADEH A, MOTAMENI H. Muhimanifold analysis with adaptive neighborhood in DCT domain for face recognition using single sample per person[C]. 2014 22nd Iranian Conference on Electrical Engineering (ICEE. IEEE. 2014,925-930.

二级参考文献22

  • 1Seung H, Lee D. The manifold ways of perception [J]. Science, 2000, 290(5500) : 2268 - 2269.
  • 2Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 - 2326.
  • 3Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319- 2323.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373- 1396.
  • 5He X, Niyogi P. Locality preserving projections [C] // Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 153- 160.
  • 6Chang Y, Hu C, Turk M. Manifold of facial expression [C] // Proc IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003:28 - 35.
  • 7Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding [C]// NIPS, Vancouver, British Columbia, Canada, 2001 : 1255 - 1262.
  • 8Kanade T, Cohn J, Tian Y. Comprehensive database for facial expression analysis [C] // IEEE Proc the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2000:46 - 53.
  • 9Ekman P. Emotion in the Human Face [M]. New York: Cambridge University Press, 1982.
  • 10Cand&E J,Romberg J,Tao T.Signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math,2005,59(8):1207-1223.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部