期刊文献+

聚类融合算法的实验评价方法

The Evaluation Method of Clustering Fusion Algorithm
下载PDF
导出
摘要 聚类融合算法被认为是数据分析的有效工具之一。然而,除了研究优良的聚类融合算法,如何评价聚类的质量也被认为是难题之一。传统的外在方法使用专家评价的基准作为参照。但是实际上,这种基准不但昂贵,而且常常不容易得到。因此,一种新颖的基于实验的聚类融合算法评价方法被提出,其参照基准是基于所有聚类融合算法折衷所得出来的。基于这个方法的设计框架,实验部分使用了SLC(single-linkage clustering)和IVC(iterative voting clustering)在2个仿真和3个UCI数据集上进了评价对比,并将结果和传统外在方法进了比较。从传统外在方法看来,当参与评价的算法是强聚类融合算法时,该评价方法结果与传统方法的评价结果一致。 Clustering fusion algorithm is considered to be one of the effective tool of data analysis. However, in addition to excellent Clustering Fusion Algorithm Research, how to evaluate the quality of clustering is also considered one of the problems. Expert evaluation using external traditional methods as a reference benchmark. But in fact, this benchmark is not only expensive, and often not easy to get. Therefore, an experimental clustering fusion algorithm is proposed based on a novel evaluation method, the reference is all Clustering Fusion Algorithm Based on the compromise. This method is based on the design framework, experiments using SLC (single-linkage clustering) and IVC (iterative voting clustering) in 2 Simulation and 3 UCI data sets up a comparative evaluation, and the results were compared with traditional external method. From the point of view of the traditional external method, when participating in the evaluation algorithm is clustering fusion algorithm, the evaluation results of the evaluation method and the traditional method of the same.
作者 梁荣德 刘波
出处 《无线互联科技》 2015年第7期127-130,共4页 Wireless Internet Technology
基金 国家自然科学基金 基金编号:61203280 广东省自然科学杰出青年基金 基金编号:S2013050014133
关键词 评价方法 聚类融合算法 外在方法 Evaluation method Clustering Fusion Algorithm The external approach
  • 相关文献

参考文献12

  • 1A.Strehl,J.Ghosh.Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J].Journal of Machine Learning Research,2002,3(1):583-617.
  • 2A.Fred,Anil K Jain.Combining multiple clusterings using evidence accumulation[J].Pattern Analysis and Machine Intelligence,2005,27(6):835-850.
  • 3Alexander Topchy,Anil K Jain,William Punch.Clustering ensembles:models of consensus and weak partitions[J].Pattern Analysis and Machine Intelligence,2005,27(12):1866-1881.
  • 4S.T.Hadjitodorov,L.Kuncheva,LP Todorova.Moderate diversity for better cluster ensembles[J].Information Fusion,2006,7(3):264-275.
  • 5L.Kuncheva,D.Vetrov.Evaluation of stability of k-means cluster ensembles with respect to random initialization[J].Pattern Analysis and Machine Intelligence,2006,28(11):1798-1808.
  • 6Nam Nguyen,Rich Caruana.Consensus clusterings[C]//Proceeding of IEEE 13th International Conference on Data Mining,2007:607-612.
  • 7N.Iam-On,T.Boongoen,S.Garrett,et al.A link-based approach to the cluster ensemble problem[J].Pattern Analysis and Machine Intelligence,2011,33(12):2396-2409.
  • 8Hongjun Wang,Hanhuai Shan,Arindam Banerjee.Bayesian cluster ensembles[J].Statistical Analysis and Data Mining:The ASA Data Science Journal,2011,4(1):5470-5471.
  • 9N Li,L.J.Latecki.Clustering aggregation asmaximum-weightindependent set[C]\\Proceedings of Neural Information Processing Systems,2012:782-790.
  • 10Andr Laurenco,Samuel Rota Bulo,Nicola Rebagliati,et al.Probabilistic consensus clustering using evidence accumulation[J].Machine Learning,2013(4):331-357.

二级参考文献15

  • 1STREHL A, GHOSH J. Cluster ensembles - a knowledge reuse framework for combining multiple partitions [ J]. Journal of Machine Learning Research, 2002, 3:583-617.
  • 2FERN X Z, BRODLEY E C. Cluster ensembles for high dimension- al data elustering: an empirical study, #CS06-30-02[ R]. Corval- lis, USA: Oregon State University, 2004.
  • 3WANG T. CA-Tree: a hierarchical structure for efficient and scala- ble coassociation-based cluster ensembles [ J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B, 2011, 41(3): 686 - 698.
  • 4IAM-ON N, BOONGOEN T, GARRETF S, eta/. A link-based ap- proach to the cluster ensemble problem [ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33(12): 2396-2409.
  • 5FRED A L N, JAIN A K. Combining multiple clusterings using evi- dence accumulation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 6GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation [C]// ICDE '05: Proceeding of 2005 IEEE International Confer- ence on Data Engineering. Piscataway: IEEE, 2005:341-352.
  • 7KUNCHEVA L I, VETROV D P. Evaluation of stability of k-means cluster ensembles with respect to random initialization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1798-1808.
  • 8FISCHER B, BUHMANN J M. Bagging for path-based clustering [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003, 25(11) : 1411 - 1415.
  • 9MINAEI-BIDGOLI B, TOPCHY A, PUNCH W. A comparison of resampling methods for clustering ensembles [ C]// Proceeding of 2004 International Conference on Machine Learning: Models, Tech- nologies, and Applications. l_as Vegas: CSREA Press, 2004:939 - 945.
  • 10FERN X Z, BRODLEY E C. Random projection for high dimen- sional data clustering: a cluster ensemble approach [ C]// ICML 2003: Proceedings of the 20th Internatianal Conference on Machine learning. Washington, DC: AAAI Press, 2003: 186-193.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部