期刊文献+

居民生活用电特征与影响机理 被引量:13

Characteristics and Impact Mechanism of Residential Electricity Consumption
下载PDF
导出
摘要 近年来我国居民家庭生活中碳排放量增长迅速,其中电力消费增长是导致家庭碳排放增加的重要原因。本文利用上海市居民生活碳消费调查的居住用电数据,分析了上海市常住居民家庭用电的特征和影响机理。回归模型显示上海居民生活用电受到人口规模、收入水平、居住面积、低碳态度和用能习惯的显著影响,且不同用电量家庭的用电影响因素种类和作用效果都不同:低用电家庭的生活用电受人口规模、低碳态度和用能行为的影响,中等用电家庭生活用电的显著影响因素为人口规模、收入水平、低碳态度和用能行为,高用电家庭的生活用电受到人口规模、用能习惯和居住面积的影响;并且随着用电分布从低向高移动,各影响因素的作用效果或增高或降低,呈现不同的变化趋势。 The electricity consumption plays a vital role in the rapid growth of residential carbon emissions recently in China. Based on data from 2013 Carbon Consumption Survey in Shanghai, this paper analyzes the characteristics and impact mechanism of residential electricity consumption in Shanghai. The results show that the average annual electricity use per household is 2184. 6 kWh with a standard deviation of 1398.5 kWh, and Gini Coefficient is O. 32. Power consumed during summer and winter is more and has a higher dispersion than that in spring and autumn. Besides, this paper analyzes determinants of residential electricity use and applies quantile regression to examine effects of impact factors on power consumption at different levels. The results show that household sizes, dwelling sizes, incomes, environmental attitudes and behaviors all have significant impacts on household electricity consumption in Shanghai. We also find households with varying levels of energy use have different impact factors. Meanwhile, the effects of these impact factors vary when the electricity consumption moves from low to the high end of the spectrum. Our analysis based on quantile regression provides more information and help to further understand impact factors of residential electricity consumption for different families, which helps policymakers and researchers identify potential energy conservation opportunities.
作者 陈晶 张真
出处 《统计研究》 CSSCI 北大核心 2015年第5期70-75,共6页 Statistical Research
关键词 生活用电 影响机理 分位数回归 Residential Electricity Consumption Impact Mechanism Quantile Regression
  • 相关文献

参考文献17

  • 1H. Nie, R. Kemp. Index decomposition analysis of residential energy consumption in China: 2002 - 2010 [ J ]. Applied Energy, 2014, 121:10 - 19.
  • 2杨选梅,葛幼松,曾红鹰.基于个体消费行为的家庭碳排放研究[J].中国人口·资源与环境,2010,20(5):35-40. 被引量:99
  • 3Yan Sun, Lifang Feng. Influence of psychological, family and contextual factors on residential energy use behaviour: An empirical study of China[J]. Energy Procedia, 2011, 5:910-915.
  • 4Annika Carlsson-Kanyama, Anna-Lisa Lind6n. Energy efficiency in residences-- Challenges for women and men in the North [ J ]. Energy Policy, 2007, 35 (4) : 2163 - 2172.
  • 5John Thgersen, Alice GtOnhCj. Electricity saving in households-- A social cognitive approach [ J ]. Energy Policy, 2010, 38 ( 12 ) : 7732 - 7743.
  • 6A. H. M. E. Reinders, K. Vringer, K. Blok. The direct and indirect energy requirement of households in the European Union [J]. Energy Policy, 2003,31(2): 139 -153.
  • 7A Druckman, T Jackson. Household Energy Consumption in the UK: A Highly Geographically and Socio-economically Disaggregated model[J]. Energy Policy, 2008, 36(8): 3177-3192.
  • 8叶红,潘玲阳,陈峰,汪凯,黄少鹏.城市家庭能耗直接碳排放影响因素——以厦门岛区为例[J].生态学报,2010,30(14):3802-3811. 被引量:48
  • 9冯玲,吝涛,赵千钧.城镇居民生活能耗与碳排放动态特征分析[J].中国人口·资源与环境,2011,21(5):93-100. 被引量:87
  • 10Dirk Brounen, Nils Kok, John M. Quigley. Residential energy use and conservation: Economics and demographics [ J ]. European Economic Review, 2012,56(5): 931 -945.

二级参考文献60

共引文献202

同被引文献150

引证文献13

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部