期刊文献+

R^6中的Laguerre等参超曲面的分类 被引量:1

Classification of Laguerre Isoparametric Hypersurfaces in R^6
下载PDF
导出
摘要 若超曲面的Laguerre形式为零且Laguerre第二基本形式的特征值(称为Laguerre主曲率)为常数,则称超曲面为Laguerre等参超曲面.对R^6中的Laguerre等参超曲面进行了研究,得到了分类定理. A Laguerre isoparametric hypersurface is defined by satisfying the conditions that its Laguerre form vanishes and all the Laguerre eigenvalues are constant.In this paper,a complete classification for all Laguerre isoparametric hypersurfaces in R^6 is established.
作者 姬秀 胡传峰
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第2期175-190,共16页 Chinese Annals of Mathematics
基金 湖北省教育厅科学技术基金(No.B2014281)的资助
关键词 Laguerre度量 Laguerre形式 Laguerre张量 Laguerre第二基本形式 Laguerre等参超曲面 Laguerre metric, Laguerre form, Laguerre tensor, Laguerre secondfundamental form, Laguerre isopararmetric hypersurface
  • 相关文献

参考文献4

二级参考文献14

  • 1HU Zejun,LI Haizhong Department of Mathematics, Zhengzhou University Zhengzhou 450052, China Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.Classification of hypersurfaces with parallel Mobius second fundamental form in S^(n+1)[J].Science China Mathematics,2004,47(3):417-430. 被引量:34
  • 2Tong Zhu LI.Laguerre Geoinetry of Surfaces in R^3[J].Acta Mathematica Sinica,English Series,2005,21(6):1525-1534. 被引量:4
  • 3BLASCHE W. Vorlesungen Ubei" Differentialgeometrie[M]. Berlin: Springer-Verlag, 1929.
  • 4MUSSO E, NICOLODI L. Laguerre geomery of surfaces with plane lines of curvature[J]. Abh Math Sem Univ Hamburg, 1999, 69: 123-138.
  • 5MUSSO E, NICOLODI L. The Bianchi-Darboux transformation of L-isothermic surfaces[J]. International Journal of Mathematics, 2000, 11- 911-924.
  • 6PALMER B. Remarks on a variation problem in Laguerre geometry[J]. Rendiconti di Mathematica, Serie VII, 1999, 19: 281-293.
  • 7LI Tong-zhu, WANG Chang-ping. Laguerre geometry of hypersurfacs in An[J]. Manuscripta Math, 2007 122: 73-95.
  • 8LI Tong-zhu, SUN Hua-fei. Laguerre isopaxaxmetric hypersurfaces in R4[j]. Acta Mathematica Sinica, English Series, 2011, 28: 1179-1186.
  • 9LI Tong-zhu, LI Hai-zhong, WANG Chang-ping. Classification of hypersurfacs with parallel Laguerre second fundamental form in An[J]. Differential Geom Appl, 2010, 28: 148-157.
  • 10LI Hai-zhong, WANG Chazag-ping. Mobius geometry of hypersurfacs with constant mean curvature and constant scalar curvature[J]. Manuscripta Math, 2003, 112: 1-13.

共引文献9

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部