期刊文献+

基于FP-growth的改进算法 被引量:1

Optimization of FP-growth Algorithm
下载PDF
导出
摘要 介绍了目前关联规则挖掘中效率较高的FP-growth算法,并对FP-growth算法中存在的几点不足进行了相应的改进,改进后的算法从时间性能和空间性能两方面都得到了很大的提升。 This paper describes the FP-growth algorithm-one of the most efficient algorithm among al the association rule algo-rithms,and makes up for several deficiencies exist in FP-growth algorithm.The optimized algorithm improve the efficiency of the algorithm in time as wel as space.
出处 《工业控制计算机》 2015年第5期105-106,共2页 Industrial Control Computer
关键词 数据挖掘 频繁闭项集 FP-growth data mining FP-growth frequent closed itemsets
  • 相关文献

参考文献4

  • 1AGRAWAL R,IMIELINSKI T,SWAMI A.Mining associ.ation rules between sets of items in laFge databases[C]//Proc the ACM SIGMOD International Conference on Mall.agement ofData.Washington,DC, 1993.
  • 2陈文,王诗兵.FP-growth算法的一种优化实现[J].阜阳师范学院学报(自然科学版),2005,22(2):56-58. 被引量:1
  • 3Pang-Ning Tan.数据挖掘导论[M].范明,译.北京:人民邮电出版社,2011: 203.
  • 4颜跃进,李舟军,陈火旺.频繁项集挖掘算法[J].计算机科学,2004,31(3):112-114. 被引量:20

二级参考文献31

  • 1[1]Agrawal R., Imielinski T , A Swami. Mining Association Rules Between Sets of Items in Large Databases[C]. In :Proceeding of ACM SIGMOD International Conference, 1993-05: 207-216
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In :ULDB'94,1994: 487-499
  • 3[3]Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[C]. In :Proc. 2000 ACM-SIGMOD Int.Conf. Management of Data (SIGMOD' 00) ,2000, (5) : 1-12.
  • 4[5]Park J S, Clen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]. In: Proc. 1995 ACMSIGMOD Int. Conf. Management of Data (SIGMOD'95), 1995, (5): 175-186.
  • 5Liu J Q,Pan Y H,Wang K,Han J W. Mining Frequent Item Sets by Opportunistic Projection, KDD'02, Edmonton, Canada, July 2002
  • 6Han J, Pei J,Yin Y. Mining Frequent Patterns without Candidate Generation. In: Proc. 2000ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),Dallas, TX, May 2000
  • 7Pei J,Hah J,Lu H, et al. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases,In:Proc. 2001 Int. Conf. on Data Mining(ICDM'01) ,San Jose,CA,Nov. 2001
  • 8Agarwal R,Aggarwal C,Prasad V V V. Depth first generation of long patterns. In:Proc. of SIGKDD Conf. 2000
  • 9Burdick D, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In:proc. of the 17th Intl. Conf. on Data Engineering,Heidelberg, Germany, April 2001
  • 10http://bbs. nuj. edu. cn/dataming/2350. htm

共引文献26

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部