期刊文献+

基于ELM神经网络软件在线失效预测

Software Online Failure Prediction Based on ELM Neural Network
下载PDF
导出
摘要 提出了一个软件在线失效预测模型,以Musa的数据为实验数据,基于ELM算法的神经网络构建模型,以部分Masu的数据集作为神经网络的训练数据,把余下部分数据作为对模型的测试数据。因此数据主要分为两部分,分别为训练数据集和测试数据集,比例为6:1。通过实验结果表明,提出失效预测模型的预测值与实际值的平均误差在14.03%,相对于BP神经网络模型具有很大的提升。 This paper presents a software online failure prediction model.The experimental data is Masu's Data in this paper.The model is build based on ELM algorithm of neural network,some Masu's dataset could be used as the neural network train-ing data,the rest of the dataset be used as the test data.So the data are divided into training data set and test data set, and here the ratio is 6:1.
出处 《工业控制计算机》 2015年第5期115-117,共3页 Industrial Control Computer
关键词 失效预测 ELM算法 神经网络 failure prediction ELM algorithm neural network
  • 相关文献

参考文献11

  • 1Musa J D. Software reliability data[M]. Data & Analysis Cen- ter for Software, 1980.
  • 2Csenki A.Bayes predictive analysis of a fundamental software reliability model[J]. Reliability, IEEE Transactions on, 1990, 39 (2): 177-183.
  • 3Jelinski Z, Moranda P B. Statistical computer performance e- valuation[J]. Software reliability research, 1972:465-497.
  • 4Vaidyanathan K,Trivedi K S.A measurement-based model for estimation of resource exhaustion in operational software sys- tems[C]//Software Reliability Engineering, 1999.Proceedings.lOth International Symposium on. IEEE, 1999:84-93.
  • 5Andrzejak A, Silva L. Deterministic models of software aging and optimal rejuvenation schedules [C]//Integrated Network Management, 2007. IM'07. 10th IFIP/IEEE International Sym- posium on. IEEE, 2007:159-168.
  • 6Troudet T, Merrill W. A real time neural net estimator of fa- tigue life[C]//Neural Networks, 1990., 1990 IJCNN Interna- tional Joint Conference on. IEEE, 1990:59-64.
  • 7Vilalta R, Ma S. Predicting rare events in temporal domains [C]//Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on. IEEE, 2002:474-481.
  • 8Saifner F. Event-based failure prediction: an extended hid- den markov model approach[M], dissertation, de, 2008.
  • 9Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]// Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. IEEE, 2004, 2:985-990.
  • 10Salfner F, Lenk M, Malek M. A survey of online failure prediction methods [J]. ACM Computing Surveys (CSUR), 2010, 42(3):10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部