期刊文献+

一种模2k求逆算法的改进及实现

Improvement and implementation of mode 2k modular inversion algorithm
原文传递
导出
摘要 模2k求逆算法是RSA密码体系的核心运算之一。通过分析现有算法及RSA算法中求逆运算的特点,在扩展Euclidean算法基础上,提出了一种改进的模2k求逆算法。该算法与原算法相比迭代次数减少1/3,不仅简化加法进位的处理,而且省去了部分大数加减法操作。同时给出新算法硬件电路结构及数据验证方法,并实现了2 048位模2k求逆硬件电路设计。仿真验证结果表明,改进后的算法与原算法相比,电路面积减小了18.5%,运算速度提高了34.2%。 Mode 2k modular inversion operation is one of the core operations in RSA cryptography. By analyzing the existing algorithms and inverse operation characteristics of RSA algorithm, this paper presents an improved mode 2k modular inver- sion algorithm which is based on extended Euclidean algorithm. Compared with the original algorithm, the number of itera- tions reduces one-third, the new algorithm can not only simplify the processing of carry adder, but also avoid some addition and subtraction operations of large numbers. At the same time, the paper gives the hardware circuit structure and data veri- fication method, and designs the 2048 - bit mode 2k modular inversion hardware circuit. Simulation results show that, com- pared to the original algorithm, the circuit area is reduced by 18.5% and the computation speed is increased by 34.2%.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第3期422-426,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 西安邮电大学研究生创新基金(ZL2013-27)~~
关键词 模2k求逆 扩展Euclidean算法 蒙哥马利算法 RSA算法 mode 2k modular inversion extended Euclidean algorithm Montgomery algorithm RSA algorithm
  • 相关文献

参考文献10

二级参考文献59

  • 1陈运,龚耀寰.RSA快速算法研究[J].信息安全与通信保密,2000,22(3):43-46. 被引量:4
  • 2侯整风,李岚.椭圆曲线密码系统(ECC)整体算法设计及优化研究[J].电子学报,2004,32(11):1904-1906. 被引量:30
  • 3王健,蒋安平,盛世敏.同时支持两种有限域的模逆算法及其硬件实现[J].北京大学学报(自然科学版),2007,43(1):138-143. 被引量:2
  • 4Schneier B.应用密码学—协议、算法与C源程序(第2版)[M].北京:机械工业出版社,2000-01..
  • 5Hisil H,Wong K K H,Carter G,et al.Fast group operations on elliptic eurves[C]//The 7th Australasian Information Security Conference,Wellington,New Zealand,2009,98:7-16.
  • 6Chelton W N,Benaissa M.Fast elliptic cryptography on FPGA[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems Archive,2008,16:198-205.
  • 7Kaliski B S.The Montgomery inverse and its application[J].IEEE Transactions on Computers,1995,44(8):1064-1065.
  • 8Savas E,Koc C K.The Montgomery modular inverse revisited[J].IEEE Transactions on Computers,2000,49(7):763-766.
  • 9Savas E,Koc C K.Architecture for unified field inversion with applications in elliptic curve cryptngraphy[C]//The 9th IEEE International Conference on Electronics,Circuits and Systems,Dubrovnik,Croatia,2002,3:1155-1158.
  • 10Gutub A A A,Tonca A F,Savas E,et al.Scalable and unified hardware to compute Montgomery inverse in GF(p) and GF(2n)[C]//The 4th Internationel Workshop on Cryptographic Hardware and Embedded Systems,Redwood Shores,CA,USA,2002:484-499.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部