摘要
利用车牌照匹配技术获取的小样本旅行时间数据中通常夹杂大量异常点,无法直接用以表征当前交通状态及交通旅行时间数据的动态、离散、小样本等特性,在传统剔除算法的基础上,提出了一种统计分析与模糊C均值聚类相结合的异常点剔除新方法。将新剔除方法与传统剔除方式效果进行分析比较,得出一种精确度较高的异常点剔除方法。仿真结果表明,该方法在处理交通小样本数据上,大幅度提高了异常点检测的准确性,能够有效过滤异常数据。
As there are usually many outliers while using the method of license plate matching to obtain travel times, traffic data with small size can't be used directly. In or- der to deal with such common problems, we have studied the traditional approaches a- bout filtering outliers. Then a new outlier filtering method, which based on the features of the traffic data and combined the statistical analysis with the fuzzy C-means cluste- ring, was proposed. After comparing the new way with the traditional method, we ob- tained a method with higher degree of accuracy in filtering outliers. The results revealed that the new method can detect the outliers exactly and eliminate the outliers efficiently for small sample data.
出处
《青岛科技大学学报(自然科学版)》
CAS
2015年第3期346-349,354,共5页
Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词
智能交通
旅行时间
统计分析
模糊C均值聚类
异常点剔除
intelligent transportation
travel time
statistical analysis
fuzzy C-meansclustering
outlier filtering