期刊文献+

晶化处理后化学镀Ni-P镀层摩擦-磨损性能(英文) 被引量:6

Friction and Wear Performances of Ni-P Coatings by Chemical Plating after Crystallization Treatment
原文传递
导出
摘要 利用化学镀在YL113铝合金表面制备了非晶态Ni-P镀层,通过SEM、EDS和XRD等手段表征了其在不同温度下晶化处理后表面形貌、化学元素含量和物相组成。分析了晶化处理温度对镀层硬度的影响,并用HSR-2M型往复摩擦磨损试验机考察了Ni-P镀层磨损机制。结果表明,当晶化处理温度升高时,镀层晶粒尺寸逐渐增大,镀层中形成了以Ni为主的化合物,在350℃时硬度最高;350以后,如果晶化温度继续升高,晶粒尺寸增大,表现出以Ni的衍射峰强度增加的反霍佩琪效应;随晶化处理温度升高,镀层摩擦系数先增大后减小,在350℃时摩擦系数最小,磨损性能最好。晶化处理温度低于350℃、在350℃、高于350℃时的磨损机制分别为磨粒磨损、粘着磨损+磨粒磨损、粘着磨损。 Amorphous Ni-P coating was prepared on the surface of ZL113 aluminum alloy by electroless plating.The surface morphologies,chemical element contents and phase compositions of the coating at different crystallization temperatures were characterized by SEM,EDS and XRD,respectively.The effect of crystallization temperature on coating micro-hardness was analyzed,and the wear mechanism was investigated with HSR-2M type reciprocation friction abrasion tester.The results show that the grain size of Ni-P coating increases with the increases of crystallization temperature,Ni based compounds are formed in the coating,and the hardness is the highest at the temperature of 350 ℃.After 350 ℃,if the crystallization temperature increases continuously,and the grain size increases a little fast a reverse effect of Hall-Petch with the intensity of Ni diffraction peak increasing is shown.The friction coefficient increases first and then decreases with the increases of crystallization temperature.The friction coefficient is minimum,and the wear resistance is the best at 350 ℃.The wear mechanism is abrasive wear,abrasive+adhesive wear and abrasive wear at the crystallization temperatures less than 350 ℃,350 ℃,more than 350 ℃,respectively.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第6期1314-1319,共6页 Rare Metal Materials and Engineering
基金 The Science and Technology Support Project of Jiangsu Province,China(BE2012066)
关键词 晶化温度 NI-P镀层 表面形貌 显微硬度 摩擦系数 磨损性能 crystallization temperature Ni-P coating surface morphology micro-hardness friction coefficient wear performance
  • 相关文献

参考文献1

二级参考文献12

  • 1Sundararajan G. The energy absorbed during the oblique impact of a hard ball against ductile target materials. Int J Impact Engng, 1990, 9:343~358
  • 2Ratner SB, Styller EE. Characteristics of impact friction and wear of polymeric materials. Wear, 1981, 73:213
  • 3Brach RM. Impact dynamics with applications to solid particle erosion. Int J Impact Engn9, 1988, 7:37~53
  • 4Hutchings IM, MacMillan NH, Rickerby DG. Further studies of the oblique impact of a hard sphere against a ductile solid. Int J Mech Sci, 1981, 23:639~646
  • 5Lewis AD, Rogers PJ. Experimental and numerical study of forces during oblique impact. J Sound & Vibration, 1988,125:403~412
  • 6Chen Danian, Sarumi M, Al-Hassani STS. Computational mean particle erosion model. Wear, 1998, 214:64~73
  • 7Stronge WJ. Planar impact of rough compliant bodies. Int J Impact Engna, 1994, 15:435~450
  • 8Bowden FP, Moore AFW, Tabor D. The ploughing and adhesion of sliding metals. J Appl Phys, 1943, 14:80~91
  • 9Tabor D. Junction growth in metallic friction: the role of combined stresses and surface comtamination. Proc R Soc London, Ser A, 1959, 251:378~384
  • 10Irfan MA, Prakash V. Time resolved friction during dry sliding of metal on metal. Int J Solids & Struct, 2000, 37:2859~2882

共引文献7

同被引文献51

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部