期刊文献+

微波烧结镀铜TiB_2增强铜基复合材料的膨胀性能 被引量:1

Expansion Properties of the Copperized TiB_2 Reinforced Copper Matrix Composites Fabricated by Microwave Sintering
原文传递
导出
摘要 应用化学镀铜方法对TiB2颗粒进行表面镀铜,采用微波烧结技术制备了含TiB2体积分数不同的TiB2/Cu复合材料,测试了试样在50-300℃区间的膨胀系数,探讨了TiB2含量及其表面改性对TiB2/Cu复合材料热膨胀系数的影响。结果表明:随着TiB2含量的增加,复合材料的膨胀系数降低;TiB2颗粒表面镀铜后,在TiB2相同含量条件下,TiB2/Cu复合材料的膨胀系数进一步降低;理论模型计算结果表明,TiB2未镀铜的TiB2/Cu复合材料的膨胀系数与ROM模型计算值相符合,而TiB2镀铜的TiB2/Cu复合材料的膨胀系数与Kerner模型计算值相符合,反映了TiB2颗粒镀铜后能很好地改善颗粒与基体的结合。 The TiB2/Cu composites contained different volume fractions of TiB2 were fabricated by microwave sintering.The coefficient of thermal expansion(CET) of all samples were measured in the range of 50-300 ℃ with a dilatometer.And the effects of TiB2 content and TiB2 surface modification treatment of electroless copper plating on the CET of TiB2/Cu composites were also discussed.The results show that CET of TiB2/Cu composites decreases with increasing of TiB2 content.After the TiB2 surface is modified with chemical plating copper,the CET of the TiB2/Cu composites further decreases with the same TiB2 content.The results of theoretical calculation indicate that the CET of the TiB2/Cu composites with TiB2 of no plating copper is consistent with the calculated value of ROM model,while the CET of the TiB2/Cu composites with TiB2 of plating copper is consistent with the calculated value of Kerner model,which suggests that the interface of the TiB2 particles and the matrix is greatly improved after the TiB2 particles are modified with plating copper.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第6期1446-1450,共5页 Rare Metal Materials and Engineering
基金 南昌市科技攻关项目(DA20090111) 江西省自然科学基金(2011ZBAB205037)
关键词 微波烧结 铜基复合材料 化学镀铜 膨胀性能 microwave sintering copper matrix composite electroless copper plating expansion properties
  • 相关文献

参考文献18

  • 1Shu Kuen-Ming, Tu G C. Materials Science and Engineering A[J], 2003, 349:236.
  • 2Zhang L, Qu X H, He X Bet al. Materials Science and Engineering A[J], 2008, 489:285.
  • 3Wang Lidong, Xue Zongwei, Qiao Yingjie et al. Materials Science and Engineering B [J], 2012, 177:873.
  • 4Abyzov Andrey M, Kidalov Sergey V, Shakhov Fedor M. Applied Thermal Engineering[J], 2012, 48:72.
  • 5Zhang Yijie, Ma Naiheng, Wang Haowei et al. Scripta Materialia[J], 2005, 53:1171.
  • 6Besterci Michal, Ivan Jozef, Kovac Ladislav. Materials Letters[J], 2000, 46:181.
  • 7Jennifer M Ullbrand, Jos6 M C6rdoba, Javier T A et al. Composites Science and Technology[J], 2010, 70:2263.
  • 8Sun Shuo, Liu Jianguo, Yan Chuanwei et al. Applied Surface Science[J], 2008, 254:5016.
  • 9Leon C A, Rodriguez-Ortiz C Aguilar-Reyes E A. Materials Science and Engineering A [J], 2009, 526:106.
  • 10彭元东,易健宏,罗述东,李丽娅,陈刚,冉俊铭.微波技术在金属材料制备中的应用现状[J].稀有金属材料与工程,2009,38(4):742-747. 被引量:18

二级参考文献91

共引文献38

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部