期刊文献+

轧制驱动-ECA大应变纯铝的强化机理

Strengthening Mechanism of the Large Straining CP Al Processed by Rolling Driven-ECA
原文传递
导出
摘要 研究了经过轧制驱动等通道转角大应变加工的商业纯铝的强化机理。基于XRD分析和Taylor公式的定量计算说明,轧制驱动ECA大应变CP Al的内部位错密度很低。通过晶体微区取向分析技术(EBSD)对大应变材料内部的小角度界面和大角度界面进行表征,发现材料内部大多数是小角度晶界;基于Hall-Petch关系对大应变纯铝的强化机理进行定量分析,得出其强化主要来自于小角度晶界强化。 The strengthening mechanism of the large straining CP Al processed by rolling driven-ECA(Equal Channel Angular) was investigated.A theoretical calculation based on XRD analysis and Taylor equation indicates that the dislocation density of the large straining CPAl by rolling driven-ECA is very low.Low angle grain boundary and high angle grain boundary were measured by a crystal micro area orientation analysis technique and the results demonstrate that the low angle grain boundary is much more.Strengthening mechanisms of the large straining CP Al were quantitatively calculated based on the Hall-Petch relationships,and it is concluded that the strengthening mainly comes from the low angle grain boundary.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第6期1451-1454,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51074079) 江苏省高校科研成果产业化推进项目(JH10-37) 江苏大学"拔尖人才培养工程基金"(1211110001) 江苏省高校研究生科研创新计划项目(CXZZ12-0657)
关键词 大应变 X射线衍射仪 晶体微区取向分析技术 强化机理 large straining XRD EBSD strengthening mechanism
  • 相关文献

参考文献12

  • 1靳丽,林栋樑,毛大立,曾小勤,丁文江.两步等通道角挤压AZ31镁合金的微观组织和力学性能[J].上海交通大学学报,2005,39(11):1775-1778. 被引量:8
  • 2WuShiding(吴世丁),LiQiang(李强),JiangChuanjian(姜传碱)eta1.金属学报[J],2000,36(6).
  • 3Youssef K M, Scattergood R O, Murty K Let al. Scripta Materialia[J], 2006, 54 (2): 251.
  • 4XuXiaojing(许晓静),SongTao(宋涛),FanZhen(范真)eta1.稀有金属材料与工程[J],2012,41(2):621.
  • 5Korznikov A V, SafarovI M, Nazarov A A et al. Materials Science and Engineering A[J], 1996, 206 (1): 39.
  • 6Luo P, McDonald D T, Xu Wet al. Scripta Materialia[J], 2012, 66(10): 785.
  • 7Luo P, McDonald D T, Xu Wet al. Materials Science and EngineeringA[J], 2012, 538 (15): 252.
  • 8SongTao(宋涛),XuXiaojing(许晓静),FanZhen(范真)eta1.稀有金属材料与工程[J],2012,41(2):37-38.
  • 9Hughes D A, Hansen N. Acta Materialia[J], 2000, 48(2): 2985.
  • 10Bowen J R, Prangnell P B, D Juul Jensen et al. Materials Science and Engineering A[J], 2004, 387-389(15): 235.

二级参考文献8

  • 1Segal V M, Reznikov V I, Drobyshevskiy A E, et al.Plastic working of metals by simple shear[J]. Russ Metall, 1981,(1): 99-105.
  • 2Segal V M. Materials processing by simple shear[J].Materials Science and Engineering. A, 1995, 197 (2):157-164.
  • 3Zan W H, Yu Y, Lawrence C, et al. Microstructures and tensile properties of wrought magnesium alloys processed by ECAE[J]. Materials Forum, 2003, 419-422(1): 243-248.
  • 4Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing [J]. Scripta Materialia, 2002, 47(1): 39-44.
  • 5Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J]. Acta Materialia, 2003, 51 (11) : 3293-3307.
  • 6Dimitrov O. Nominal and effective strains in severe plastic deformation processes[J]. Ann Chim Sci Mat,2002, 27 (3): 15-24.
  • 7Gholinia A, Prangnell P B, Markushev M V. The ef fect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE[J]. Acta Mater, 2000, 48(5): 1115-1130.
  • 8Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure [J]. Scripta Materialia, 2001, 45(1): 89-94.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部