期刊文献+

共溅射氧化法制备掺钼VO_2及其相变特性

Preparation of Mo-doped VO_2 Thin Films via Cosputtering-Oxidation and Their Phase Transition Properties
原文传递
导出
摘要 采用共溅射氧化法,在普通玻璃衬底上室温直流溅射沉积钒钼金属薄膜,再在大气环境下经热氧化处理获得掺钼VO2薄膜。通过XRD、SEM、热致相变电学特性等分析,研究制备工艺及掺杂改性对掺钼VO2薄膜的微结构、形貌、热滞回线和相变温度的影响。实验与分析结果表明,与相同厚度的纯VO2薄膜相比,钼掺杂显著改变了VO2薄膜的表面形貌特征,掺钼VO2薄膜呈多晶态且沿VO2(002)择优取向生长,结晶性和取向性明显提高,薄膜的相变温度降低至38℃,热滞回线宽度收窄约至8℃。低温共溅射氧化法制备的掺钼VO2薄膜的热阻效应明显,薄膜的金属-半导体相变特性良好。 The V-Mo metal thin films were deposited on the glass substrates by magnetron co-sputtering at room temperature,and then the prepared metal thin films were sufficiently oxidized to the Mo-doped VO2 thin films by thermal oxidation under the air condition.The effects of the preparation processing and Mo doping on the microstructure,the morphology,the thermal hysteresis loop and phase transition temperature of the VO2 thin films were analyzed by XRD,SEM and resistance-temperature measurement.The results show that Mo doping significantly changes the surface morphologies of VO2 thin films,and Mo-doped VO2 thin films exhibit VO2(002) preferred orientation growth with greatly improved crystallinity and orientation.Compared with VO2,the phase transition temperature of Mo-doped VO2 thin films drops to 38 ℃,and the width of thermal hysteresis loop narrows to 8 ℃.It is demonstrated that Mo-doped VO2 thin films prepared by V-Mo cosputtered-oxidation at room temperature have an obvious thermal sensitive effect,and keep a good characteristic from metal to semiconductor phase transition.
机构地区 五邑大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第6期1513-1516,共4页 Rare Metal Materials and Engineering
基金 广东省自然科学基金(10152902001000025) 广东省教育厅高校特色创新项目(2014KTSCX129) 广东省大学生创新创业训练计划项目(2012-2014) 江门市科技项目(江财工[2012]156 江科[2014]145)
关键词 VO2薄膜 共溅射 钼掺杂 相变 VO2 thin film cosputtering Mo-doped phase transition
  • 相关文献

参考文献21

  • 1Morin F J. Phys RevLett[J], 1959, 3(1): 34.
  • 2Hiroshi Kakiuchida, Ping Jin, Masato Tazawa. Solar Energy Materials & Solar Cells[J], 2008, 92(10): 1279.
  • 3Joyeeta N, Haglund Jr R F. J Phys Condens Matter[J], 2008, 20(26): 264 016.
  • 4Luo Zhenfei, Wu Zhiming, Xu Xiangdong et al. Thin Solid Films[J], 2011,519:6203.
  • 5Gao Yanfeng, Luo Hongjie, Zhang Zongtao et al. Nano Energy[J], 2012, 1:221.
  • 6何鹏,颜家振,黄婉霞,张月,罗蓉蓉,蔡靖涵.退火升温速率对VO_2薄膜相变性能的影响[J].稀有金属材料与工程,2010,39(5):867-870. 被引量:5
  • 7Wang Xuejin, Liu Yuying, Li Dehua et al. Chin Phys B[J], 2013, 22:066 803.
  • 8Zhu Naiwei, Hu Ming, Xia Xiaoxu et al. Chin Phys B[J], 2014, 23:048 108.
  • 9Manfredi Saeli, Russell Binions, Clara Piccirillo et al. Appl SurfSci[J], 2009, 255:7291.
  • 10Hiroshi Kakiuchida, Ping Jin, Masato Tazawa. Thin Solid Films[J], 2008, 516(14): 4563.

二级参考文献49

  • 1王银玲,李美成,赵连城.磁控溅射氧化钒薄膜的相成分及电阻-温度特性[J].稀有金属材料与工程,2005,34(7):1077-1080. 被引量:24
  • 2[1]Morin F. [J]. J Phys Rev Lett, 1959, (3): 34-38.
  • 3[2]Guinneton F, Sauquesb L, Valmalette J C, et al. [J]. J Phys Chem of Solids, 2001, 62: 1229-1238.
  • 4[3]Valmalette J C, Gavarri J R. [J]. Mate Sci Engi, 1998, B54:168-173.
  • 5[4]Kivaisi R T, Samiji M. [J]. Sol Ene Mat & Sol Cel, 1999, 57:141-152.
  • 6[5]Nagashima M, Wada H. [J] Thin Solid Films, 1998, 312:61-65.
  • 7[6]Muraoka Y, Ueda Y, Hiroi Z. [J]. J Phys Chem Solids, 2002,63: 965-967.
  • 8[7]Ivon A I, Kolbunov V R, Chernenko I M. [J]. J Eur Cera Soc, 1999, 19: 1883-1888.
  • 9[8]Burkhardt W, Christmann T, Franke S, et al. [J]. Thin Solid Films, 2002, 402: 226-231.
  • 10[9]Jin P, Nakao S, Tanemura S. [J]. Thin Solid Films, 1998,324: 151-158.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部