期刊文献+

面向高轨目标成像的强度相干阵列优化 被引量:2

Amelioration of Intensity Correlation Array towards High-Orbit Satellite Imaging
下载PDF
导出
摘要 对高轨目标成像时为减小恢复图像中的噪音,需对相干阵列系统参量进行优化以提高强度相干成像质量.根据强度相干原理分析空间频谱测量噪音和相位恢复噪音产生的原因,在高频探测器数量固定情况下,分析相干阵列的集光面面积、探测器排布间距等参量对成像质量的影响.通过室内实验,研究最优集光面面积和最短观测基线的选取方法.实验结果表明:对于14星等的地球同步轨道卫星,阵列最短基线长度为光场横向相干长度0.61倍,集光面直径为光场横向相干长度的0.46倍时可获得最佳成像效果.对阵列的优化能够提高强度相干成像质量. In order to reduce the noise of reconstuted image when imaging high orbit satellites with intensity correlation array, research on array amelioration should be done to improve the quality of intensity correlation imaging. According to intensity correlation principle, the reasons of spatial spectrum measurement noise and phase retrieval noise generation were analyzed. Also, the effect of condenser area of intensity correlation array, detector arrangement spacing and other parameters on imaging quality was analyzed in condition that the number of high-frequency detectors was fixed. The selecting methods of optimal condenser area and the observation baseline was discussed by a mockup experiment. As the experiment results indicate: for the 14 Mv geostationary satellite, the optimal image can be obatined when the shortest array baseline length is 0.61 times as long as the transverse coherence length, and the condenser diameter is 0.46 times as long as the transverse coherence length. The intensity correlation imaging quality can be largely improved by array amelioration.
出处 《光子学报》 EI CAS CSCD 北大核心 2015年第6期94-100,共7页 Acta Photonica Sinica
基金 国家高技术研究发展计划项目(No.2011AA8080110)资助
关键词 空间目标成像 强度相干 相位恢复 阵列优化 散粒噪音 部分相干 Space object imaging Intensity correlation Phase retrieval Array amelioration Shot noise Partially coherence
  • 相关文献

参考文献20

  • 1周超,杨洪波,吴小霞,张景旭.地基大口径望远镜结构的性能分析[J].光学精密工程,2011,19(1):138-145. 被引量:29
  • 2姚保利,雷铭,薛彬,郜鹏,严绍辉,赵惠,赵卫,杨建峰,樊学武,邱跃洪,高伟,赵葆常,李英才.高分辨和超分辨光学成像技术在空间和生物中的应用[J].光子学报,2011,40(11):1607-1618. 被引量:22
  • 3MILLOUR F. All you ever wanted to know about optical long baseline stellar interferometry, but were too shy to ask your adviser[J]. New Astronomy Reviews, 2008, 52(2) : 177-185.
  • 4HARM W, ROIDER C, JESACHER A, et al. Lensless imaging through thin diffusive media [J]. Optics Express, 2014, 22(18): 22146-22156.
  • 5董磊,刘欣悦,陈宝刚,林旭东,卫沛峰.傅里叶望远镜外场实验与结果分析[J].光子学报,2011,40(9):1317-1321. 被引量:11
  • 6STREKALOV D V, KULIKOV I, YU N. Imaging dark objects with intensity interferometry [ J ]. Optics Express, 2014, 22(10) : 12339-12348.
  • 7李希宇,高昕,唐嘉,陆长明.面向高轨目标的强度相干成像技术研究[J].飞行器测控学报,2014,33(4):348-353. 被引量:3
  • 8HORCH E P, VAN BELLE G, GENET R M, etal. Intensity interferometry for the 21ST century [J] . Journal of Astronomical Instrumentation, 2013,2(2): 9-19.
  • 9DRAVINS D, LEBOHEC S, JENSEN H, et al. Optical intensity interferometry with the cherenkov telescope array [J]. Astroparticle Physics, 2013, 43(6) : 331-347.
  • 10HANBURY BROWN R, DAVIS J, ALLEN L R. The angular diameters of 32 stars [J]. Monthly Notices of the Royal Astronomical Society, 1974, 167(11): 121-136.

二级参考文献45

  • 1陆长明,王建军,高昕,王建立.傅里叶望远镜原理及改进研究[J].飞行器测控学报,2010,29(2):17-20. 被引量:7
  • 2YangDehua GuBozhong CuiXiangqun.STRUCTURAL ANALYSIS OF THE REFLECTING SURFACE SYSTEM OF A LARGE ASTRONOMICAL TELESCOPE[J].Chinese Journal of Mechanical Engineering,2004,17(3):415-419. 被引量:5
  • 3HOLMES R B,MA S,BHOWMIK A,et al.Aperture-synthesis techniques that use very-low-power illumination[C].SPIE,1995,2566:177-185.
  • 4HOLMES R B,MA S,BHOWMIK A,et al.Analysis and simulation of a synthetic-aperture technique for imaging through a turbulent medium[J].JOSA A,1996,13(2):351-364.
  • 5FORD S D,VOELZ D G,VICTOR L.Geo light imaging national testbed(GLINT)past,present,and future[C].SPIE,1999,3815:2-10.
  • 6GAMIZ V L,HOLMES R B,CZYZAK S R,et al.GLINT:program overview and potential science objectives[C].SPIE,2000,4091:304-315.
  • 7STAPP J,SPIVEY B,CHEN L,et al.Simulation of a fourier telescopy imaging system for objects in low earth orbit[C].SPIE,2006,6307:630701-1-11.
  • 8SPIVEY B,STAPP J,SANDLER D.Phase closure and object reconstruction algorithm for fourier telescopy applied to fast-moving targets[C].SPIE,2006,6307:630702-1-16.
  • 9THOMTON M,OLDENETTEL J,HULT D,et al.GEO Light imaging national testbed (GLINT) heliostat design and testing status[C].SPIE,2002,4489:48-59.
  • 10CUELLAR E L,STAPP J,COOPER J.Laboratory and field experimental demonstration of a fourier telescopy imaging system[C].SPIE,2005,5896:58960D-1-15.

共引文献64

同被引文献40

  • 1BORAH D K, VOELZ D G. Spatially partially coherent beam parameter optimization for free space optical communication [J]. Optics Express, 2010, 20(18) : 20746-20758.
  • 2DENG P, KAVEHRAD M, LIU Z,et al. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-kolmogorov strong turbulence[J]. Optics Express, 2013, 21(13) : 15213-15229.
  • 3JENKINS M H, LONG J M,THOMAS K G, et al. Multifilter phase imaging with partially coherent light[J] Applied Optics, 2014, 53(16): D29-D39.
  • 4CHEN C Y, YANG H M, ZHOU Z, et al. Effects of source spatial partial coherence on temporal fade statistics of irradianee flux in {tee-space optical links through atmospheric turbulence [J]. Optics Express, 2013, 24(21) : 29731-29743.
  • 5FRIBERG A T, GAO C Y, EPPICH B, eta. Generation of partially coherent fields with twist[C]. SPIE, 1997,3110: 317- 328.
  • 6AMBROSINI D, SCHIRRIPA G, PAOLETTI D, etal. High- precision digital automated measurement of degree ofcoherence in the Thompson and Wolf experiment [J] Pure and Applied Optics. 1998, 7: 933-939.
  • 7SHIRAI T, WOLF E. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space[J]. Journal of the Optical Society of America A, 2004, 21 (10) : 1907- 1916.
  • 8WANG F, LIU X, YUAN Y,et al. Experimental generation of partially coherent beams with different complex degrees of eoherenee[J]. Optics Letters. 2013, 38(11) : 1814-1816.
  • 9NELSON C, AVRAMOV-ZAMUROVICA S, KOROTKOVAB O, et al. Measurements of partially spatially coherent laser beam intensity fluctuations propagating through a hot-air turbulence emulator and comparison with both terrestrial and maritime environments[C]. SPIE, 2014, 8610: 86100T.
  • 10AVRAMOV-ZAMUROVIC S, MALEK-MADANI R, NELSON C, et al. Probability Density Function (PDF) of intensity of a stochastic light beam propagating in the turbulent atmosphere[C]. SPIE, 2012, 8238: 82380J.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部