期刊文献+

计及设备风险的供电恢复在线决策方法 被引量:2

Online-decision Method of Power Supply Restoration Considering Equipment Risk
下载PDF
导出
摘要 2013年江苏电网年度用电量首度超越广东跃居全国第一。随着社会用电负荷持续增长,电网结构日益复杂,并呈现出网格状和多环网结构,故障后快速选择电网恢复路径,实现精益化的恢复供电变得日益困难。从工程实际角度出发,提出了计及设备风险的故障后恢复供电在线决策方法,以解决调度工作中遇到的实际问题。最后通过实际的故障案例验证了该方法的正确性和有效性。 Electricity consumption in the Jiangsu power grid in 2013 exceeded the amount of the Guangdong power grid and ranked the first over the whole country. With the increasing growth of power load and the complexity of the power grid, it is more important and difficult to choose the supply restoration path rapidly and realize elaborate supply restoration. Targeting at practical power system operation, an online-decision method of power supply restoration considering equipment risk is proposed in this paper, so as to provide technical support to the dispatch operation in the Jiangsu power grid. The effectiveness and correctness of the method are verified by the analysis on a real fault case that happened in the Jiangsu power grid.
机构地区 江苏省电力公司
出处 《江苏电机工程》 2015年第3期46-48,共3页 Jiangsu Electrical Engineering
关键词 设备风险 供电恢复 在线决策 粒子群优化算法 自愈控制 equipment risk supply restoration online decision particle swarm optimization self-healing control
  • 相关文献

参考文献6

二级参考文献27

  • 1陈华,周家启,王耀辉,吴建生,李定中.瀑布沟水电站电气主接线方案可靠性计算[J].水电站设计,1994,10(3):67-73. 被引量:11
  • 2赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):1-7. 被引量:132
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4Kenndy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neutral Networks, Perth, Australia, 1995, 4: 1942-1948.
  • 5Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 2001: 101-106.
  • 6Zhang Wen, Liu Yutian. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J]. Electrical Power and Energy Systems, 2008, 4(5): 1-8.
  • 7Ratnaweera, Halgamuge S K, Waston H C. Self- organization hierarchical particle swarm optimization with time-varying acceleration coefficients[C]. Proceedings of the IEEE International Conference on Evolutionary Computation, 2004: 240-255.
  • 8Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[C]. Information Processing Letters, 2003, 85(6): 317-325.
  • 9Varadarajan M, Swarup K S, Differential evolution approach for optimal reactive power dispatch[J]. Applied Soft Computing, 2007, 12(2): 1-13.
  • 10Kennedy J,Eberhart R.Particle swarm optimization[A].In:Proceedings of IEEE International Conference on Neural Networks[C].1995,4:1942-1948.

共引文献118

同被引文献20

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部