期刊文献+

上证综指的股指波动:基于模糊FEGARCH模型及不同分布假设的预测研究 被引量:4

The Shanghai Stock Index Volatility:Forecasting Research Based on Fuzzy FEGARCH Model and Different Distribution Hypothesis
原文传递
导出
摘要 本文主要对2006年至2011年上证综指收益率序列的高频波动性进行预测研究。首先,针对金融数据的非线性和不确定等特性,借助模糊逻辑系统,提出一种新的金融市场波动率的预测方法-模糊FEGARCH模型,用来更好的针对具有非线性特性的收益率数据进行预测。其次,为了判断分布型模型和不对称型模型对预测精度的影响程度,分别采用分布型(GARCH-N,GARCH-t,GARCH-HT和GARCH-SGT)和不对称型(GJR-GARCH、EGARCH和模糊FEGARCH)的波动模型进行高级能力预测法(SPA)检测。实证结果表明,不对称模型对波动率预测的影响程度比分布假设的确定更为重要,而且模糊FEGARCH模型对于具有尖峰厚尾、高偏度和杠杆效应的非线性波动数据的预测能力更佳,说明了该模型的有效性与实用性。 In general, the transmission of volatility in the stock market is time-varying, nonlinear, and asymmetric with respect to both positive and negative results. Given this fact, the method of fuzzy logic systems is adopted to modify the threshold values for an EGARCH model. The volatility forecasting for the SSEC stock index series from 2006 to 2011 is provided and the essential source of performance improve- ments is identified between distributional assumption and volatility specification suing distribution-type (GARCH-N, GARCH-t, GARCH-HT and GARCH-SGT) and asymmetry-type (GJR-GARCH and EGARCH) volatility models through the superior predictive ability test. Such evidence strongly demon- strates that modeling asymmetric components which is the fuzzy EGARCH model is more important than specifying error distribution for improving volatility forecasts of financial returns in the presence of fat-tails ,leptokurtosis, skewness , leverage effects and nonlinear effects in china stock market.
出处 《中国管理科学》 CSSCI 北大核心 2015年第6期32-40,共9页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71101041)
关键词 波动性 模糊FEGARCH模型 预测 SPA检验 volatility fuzzy EGARCH test model forecasting superior predictive ability
  • 相关文献

参考文献21

  • 1Bollerslev T. Generalized autoregressive conditional het- eroskedasticity [J]. Journal of Econometrics, 1986,31 (3) :307-327.
  • 2Bollerslev T. A conditional heteroskedastic time series model for speculative prices and rates of return[J]. Re- view of Economics and Statistics, 1987,69 (3) : 542 - 547.
  • 3Hung J C, Lee M C, Liu H C. Estimation of Value-at- Risk for energy commodities via fat-tailed GARCH mod- els[J]. Energy Economies,2008,30(3) :1173-1191.
  • 4Theodossiou P. Financial data and the skewed general- ized t distribution [J]. Management Science, 1998, (44) : 1650- 1661.
  • 5Wilhelmsson A. GARCH forecasting performance under different distribution assumptions [J]. Journal of Fore- casting,2006, (25) :561 - 578.
  • 6Chuang I Y, Lu J R, Lee P H. Forecasting volatility in the financial markets: A comparison of alternative distri- butional assumptions [J]. AppliedFinancifil Economics, 2007, 17(3):1051-1060.
  • 7Nelson D B. Conditional heterskedasticity in asset re- turns: A new approach [J]. Econometrica, 1991,59 (12) :347-370.
  • 8Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and the volatility nominal ex- cess return on stocks[J]. Journal of Finance, 1993,48 (5) : 1779- 1801.
  • 9Engle R F, Ng V K. Measuring and testing the impact of news on volatility [J]. Journal of Finance, 1993,48 (5) : 1749-1778.
  • 10Taylor J W. Volatility forecasting with smooth transi- tion exponential smoothing [J]. International Journal of Forecasting, 2004, 20(2): 273-286.

二级参考文献61

共引文献62

同被引文献56

  • 1梁朝晖.股指期货上市对现货市场的影响——来自中国的实证研究[J].大连理工大学学报(社会科学版),2012,33(1):14-18. 被引量:8
  • 2于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013,21(S1):341-345. 被引量:15
  • 3Wang Juiie,Wang Jianzhou,Zhang Z,et al. Stock index forecasting based on a hybrid model[JT. Omega, 2012,40 (6) ~758-766.
  • 4Pal Pingfeng,Lin C. A hybrid ARIMA and support vec- tor machines model in stock price foreeasting[J]. Ome- ga, 2005,33(6) :497-505.
  • 5Kim K. Financial time series forecasting using support vector machines[J]. Neuroeomputing, 2003,55 ( 1 - 2) : 307-319.
  • 6Huang Wei, Nakamori Y,Wang Shouyang. Forecasting stock market movement direction with support vector machine[J]. Computers ~ Operations Research, 2005, 32(10) :2513-2522.
  • 7Engle R F. Autoregressive conditional heteroscedastici- ty with estimates of the variance of United Kingdom in- flation[J]. Econometrica, 1982,50 (4) : 987 - 1007.
  • 8Bollerslev T. Generalized autoregressive condi-tional heteroskedasticity[J]. Journal of Econometrics, 1986,3 1(3) :307-327.
  • 9Mohammadi H, Su Lixian. International evidence on crude oil price dynamics~ Applications of ARIMA- GARCH models[J]. Energy Economics, 2010,32 ( 5 ) : 1001-1008.
  • 10Liu Heping, Shi Jing. Applying ARMA-GARCH ap- proaches to forecasting short-term electricity prices[J]. Energy Economics, 2013,37 : 152 - 166.

引证文献4

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部