期刊文献+

The effect of finite duration inputs on the dynamics of a system: Proposing a new approach for cancer treatment 被引量:1

The effect of finite duration inputs on the dynamics of a system: Proposing a new approach for cancer treatment
原文传递
导出
摘要 In this paper, a principal question regarding the effect of inputs on the characteristics of dynamic systems is discussed. Whether an input implemented only for a limited duration, can change the characteristics of a dynamic system such that the behavior of the free system, after eliminating the input, differs from that before acting the input? In this paper, it is shown that a limited time acted input is not able to change the dynamical properties of a system after its elimination. Regarding the proposed approach, a novel finite duration treatment method is developed for a tumor-immune system. The vaccine therapy is used to change the parameters of the system and the chemotherapy is applied for pushing the system to the domain of attraction of the healthy state. For optimal chemotherapy, an optimal control is used based on state-dependent Riccati equation (SDRE). It is shown that, in spite of eliminating the treatment (therapeutic inputs), the system approaches to healthy state conditions. The present analysis suggests that a proper treatment method must change the dynamics of the cancer instead of only reducing the population of cancer cells.
出处 《International Journal of Biomathematics》 2015年第3期155-173,共19页 生物数学学报(英文版)
关键词 CANCER stability changeable dynamic properties system. 癌症治疗 变系统 输入 有限时间 Riccati方程 动态特性 健康状态 持续时间
  • 相关文献

参考文献19

  • 1A. K. Abbas and A. H. Lichtman, Basic Immunology: Functions and Disordcr of the hnmune Systern 3rd edn. (Elsevier Health Sciences Division, Philadelphia USA, 2010).
  • 2Y. Batmani and H. Khaloozadeh, Optimal chemotherapy in cancer treatment: State- dependent Riccati equation control and extended Kalman filter, Optim. Control Appl. Meth. 34 (2012) 562-577.
  • 3N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modeling: Selected topics, speculations, and perspectives, Math. Mod. Meth. Appl. Sci. 18 (2008) 593-646.
  • 4S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tmnors: Feedback design and model updating schemes, d. Thor. Biol. 258 (2009) 444-454.
  • 5L. de Pillis, K. Fister, W. Gu, T. Head, K. Maples, T. Neal, A. Murugan and K. Kozai, Optimal control of mixed immunotherapy and chemotherapy of tumors, J. Biol. Syst. 16 (2008) 51-80.
  • 6L. G. De Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemother- apy of tumors: Modeling, applications and biological interpretations, J. Theor. Biol. 238 (2006) 841-862.
  • 7L. G. De Pillis and A. E. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach, J. Theor. Med. 3 (2001) 79-100.
  • 8K. R. Fiste and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. Appl. Math. 60 (2000) 1059-1072.
  • 9M. Galach, Dynamics of the tumor-immune system competition -- The effect of time delay, Int. J. Appl. Math. Comput. 13 (2003) 395406.
  • 10A. Ghaffari and M. Khazaee, Cancer dynamics for identical twin brothers, Theor. Biol. Med. Model. 9 (2012) 1-13.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部