期刊文献+

Testing against second-order stochastic dominance of multiple distributions

Testing against second-order stochastic dominance of multiple distributions
原文传递
导出
摘要 Second-order stochastic dominance plays an important role in reliability and various branches of economics such as finance and decision-making under risk, and statistical testing for the stochastic dominance is often useful in practice. In this paper, we present a test of stochastic equality under the constraint of second-order stochastic dominance based on the theory of empirical processes. The asymptotic distribution of the test statistic is obtained, and a simple method to compute the critical value is derived. Simulation results and real data examples are presented to illustrate the proposed test method.
出处 《International Journal of Biomathematics》 2015年第3期225-236,共12页 生物数学学报(英文版)
基金 This work is supported by Grants from the Natural Science Foundation of China (11271039) Specialized Research Fund for the Doctoral Program of Higher Education Research Fund of Weifang University (2011Z24) Funding Project of Science and Technology Research Plan of Weifang City (201301019) The Natural Science Foundation of Shandong (ZR2013FL032).
关键词 Second-order stochastic dominance asymptotic distribution hypothesis testing weak convergence. 统计检验 随机 二阶 多重分布 测试方法 检验统计量 等式约束 渐近分布
  • 相关文献

参考文献18

  • 1J. R. Berrendero and J. Carcamo, Test for the second-order stochastic dominance based on L-statistics, J. Bus. Econom. Statist. 29(2) (2011) 260-270.
  • 2C. A. Carolan and J. A. Tebbs, Nonparametric tests for and against likelihood ratio ordering in the two-sample problem, Biometrika 92(1) (2005) 159- 171.
  • 3R. Dykstra, S. Kochar and T. Robertson, Statistical inference for mfiform stochastic ordering in several populations, Ann. Statist. 19(2) (1991) 870- 888.
  • 4R. Eubank, E. Schechtman and S. Yitzhaki, A test for second-order stochastic dom- inance, Commun. Statist. Theory Methods 22 (1993) 1893-1905.
  • 5G. Fisher, D. Willson and K. Xu, An empirical analysis of term premiums using significance tests for stochastic dominance, Econ. Lett. 60(2) (1998) 195 -203.
  • 6R. V. Hogg, Iterated tests of the equality of several distributions, J. Amer. Statist. Assoc. 60 (1962) 1153 -1162.
  • 7J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data, 2nd edn. (J. Wiley, Hoboken, N J, 2002).
  • 8J. Karamata, Sur une ingalitd relative aux functions convex, Publ. Math. Univ. Belgrade 1 (1932) 145 -148.
  • 9A. Kaur, B. L. S. P. Rao and H. Singh, Testing for second-order stochastic dominance of two distributions, Econ. Theory 10 (1994) 849 -866.
  • 10A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applica- tions (Academic Press, New York, 1979).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部