期刊文献+

一类推广的非线性Volterra-Fredholm型积分不等式解的估计及其应用(英文) 被引量:1

Estimation on solutions of a class of generalized nonlinear Volterra-Fredholm type integral inequalities with applications
下载PDF
导出
摘要 研究了一类新的非线性时滞Volterra-Fredholm型积分不等式.该不等式把文献[Ma,QH,Pecaric,J:Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities.Nonlinear Anal.69(2008)393-407]中的函数σ_1(s)推广成函数w(u(s))f(s),其中w(u(s))是未知函数与非线性函数的复合函数.利用变量替换、放大及常量与变量的辩证关系等方法给出了该不等式中未知函数的估计.最后,用所得结果给出了一类积分方程解的估计. We establish a class of new nonlinear retarded Volterra-Fredholm type integral inequalities, where a known function σ1(s) in integral functions in [Ma, QH, Pecari′c, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69(2008) 393-407] is changed into the function w(u(s))f(s), where w(u(s)) is the composite function of the unknown function u(s) and a nonlinear function w(u). By adopting novel analysis techniques, such as: change of variable, amplification method, differential and integration, inverse function, and the dialectical relationship between constants and variables, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of a class of integral equations.
出处 《上海师范大学学报(自然科学版)》 2015年第3期229-236,共8页 Journal of Shanghai Normal University(Natural Sciences)
基金 supported by the National Natural Science Foundation of China(11161018) the NSF of Guangxi Zhuang Autonomous Region(2012GXNSFAA053009) the NSF of Guangdong Province(s2013010013385) the Science Innovation Project of Department of Education of Guangdong province(2013KJCX0125) the NSFP of Zhanjiang Normal University(ZL1303) the Innovation and Developing School Project of Department of Education of Guangdong province(2014KZDXM065)
关键词 Volterra—Fredholm型积分不等式 迭代积分 分析技巧 估计 Volterra-Fredholm type integral inequality iterated integrals analysis technique estimation
  • 相关文献

参考文献17

  • 1BELLMAN R. The stability of solutions of linear differential equations[J]. Duke Math J, 1943, 10:643-647.
  • 2PACHPATTE B G. Explicit bound on a retarded integral inequality[J]. Math Inequal Appl, 2004(7): 7-11.
  • 3AGARWAL R R DENG S, ZHANG W. Generalization of a retarded Gronwall-like inequality and its applications[J]. Appl Math Comput, 2005, 165: 599-612.
  • 4MA Q H, PECARIC J. Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequali- ties[J]. Nonlinear Anal, 2008, 69: 393-407.
  • 5ABDELDAIM A, YAKOUT M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type[J]. Appl Math Comput, 2011, 217: 7887-7899.
  • 6WANG W S, HUANG D, LI X. Generalized Retarded Nonlinear Integral Inequalities Involving Iterated Integrals and an Application[J/OL]. J Inequ Appl, 2013: Article ID 376.
  • 7BIHARI IA. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation[J]. Acta Math Acad Sci Hung, 1956, 7: 81-94.
  • 8PACHPATTE B G. Inequalities for Differential and Integral Equations[M]. London: Academic Press, 1998.
  • 9LIPOVAN O. A retarded Gronwall-like inequality and its applications[J]. J Math Anal Appl, 2000, 252: 389-401.
  • 10CHEUNG W S. Some new nonlinear inequalities and applications to boundary value problems[J]. Nonlinear Anal, 2006, 64: 2112-2128.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部