摘要
传统的二部图随机游走算法主要采用基于共同项目的相似度计算,并且项目之间、用户之间的影响程度是对称的,这种对称信息不能体现用户兴趣,推荐精度不高。为了提高推荐准确性,提出一种基于用户兴趣度的二部图随机游走方法。采用共同项目和用户打分项目数量的共同性质体现用户兴趣度,分析信息的不对称性,并在二部图中随机游走。实验表明,基于用户兴趣度的二部图随机游走算法提高了预测准确率和命中率。
Traditional bipartite graph random walk algorithm mainly uses the common projects-based similarity calculation,and the influ-ence degrees between both projects and users are symmetric.However,such symmetric information can not reflect user's interest and the rec-ommendation accuracy is not high as well.In order to improve recommendation accuracy,this paper proposes a user interest degree-based bi-partite graph random walk algorithm.It adopts the common property of common projects and user rating projects number to reflect user interest degree and to analyse information asymmetry,and walks randomly in bipartite graph.Experiment shows that the user interest degree-based bi-partite graph random walk algorithm improves the prediction accuracy and hit rate.
出处
《计算机应用与软件》
CSCD
2015年第6期76-79,共4页
Computer Applications and Software
基金
安徽省优秀青年基金项目(2012SQRL227)
国家级大学生创新训练计划项目(201212216034)
关键词
个性化推荐
二部图
兴趣度
随机游走
Personalised recommendation Bipartite graph Interest degree Random walk