期刊文献+

求解多目标优化问题的自适应混沌混合蛙跳算法 被引量:3

ADAPTIVE CHAOS SHUFFLED FROG LEAPING ALGORITHM FOR MULTIOBJECTIVE OPTIMISATION SOLUTION
下载PDF
导出
摘要 针对多目标优化问题提出一种自适应混沌混合蛙跳算法MACSFLA(Adaptive chaos shuffled frog leaping algorithm for multiobjective optimization)。使用动态权重因子策略以提高混合蛙跳算法SFLA(Shuffled Frog Leaping Algorithm)收敛效率,引入基于Pareto支配能力的SFLA子族群划分策略,使得SFLA能够应用于多目标优化问题。在此基础上,MACSFLA首先利用SFLA快速寻优能力接近理论Pareto最优解,然后采用自适应网格密度机制动态维护外部存储器Pareto最优解规模,并使用自适应混沌优化技术改善Pareto最优解集样本多样性,最后利用Pareto最优解选择策略为青蛙种群选择最优更新粒子。多目标函数测试实验结果表明,与MOPSO和NSGA-Ⅱ相比,MACSFLA在Pareto最优解集均匀性和多样性上有明显优势。 We propose an adaptive chaos shuffled frog leaping algorithm (MACSFLA)for multi-objective optimisation problem.It uses dy-namic weighting factor strategy to improve the convergence efficiency of shuffled frog leaping algorithm (SFLA),and introduces Pareto control capability-based SFLA sub-ethnic partition strategy to make SFLA be able to apply to multi-objective optimisation.On this basis,MACSFLA first employs fast search ability of SFLA to approach the optimal solutions of theoretical Pareto,and then uses adaptive grid density mechanism to dynamically maintain the scale of optimal Pareto solution of external memoriser,and uses adaptive chaos optimisation technology to improve the sample diversity of optimal Pareto solution.Finally,it uses optimal Pareto solution selection strategy to select more update particles for frog populations.Results of multi-objective function test experiment show that,compared with MOPSO and NSGA-Ⅱ,MACSFLA has evident ad-vantages in uniformity and diversity of optimal Pareto solution set.
作者 田祎
机构地区 商洛学院
出处 《计算机应用与软件》 CSCD 2015年第6期252-255,共4页 Computer Applications and Software
基金 陕西省教育厅科研项目(2013JK1160) 商洛学院科研项目(12SKY007) 商洛学院教改项目(12JYJX209)
关键词 多目标优化 混合蛙跳算法 PARETO 前端 混沌优化 Multi-objective optimisation Shuffled frog leaping algorithm Pareto-optimal front Chaos optimisation
  • 相关文献

参考文献14

二级参考文献66

  • 1张军英,敖磊,贾江涛,高琳.求解TSP问题的改进蚁群算法[J].西安电子科技大学学报,2005,32(5):681-685. 被引量:25
  • 2彭丹平,林志毅,王江晴.求解TSP的一种改进遗传算法[J].计算机工程与应用,2006,42(13):91-93. 被引量:19
  • 3王翠茹,冯海迅,张江维,袁和金.基于改进粒子群优化算法求解旅行商问题[J].微计算机信息,2006(08S):273-275. 被引量:20
  • 4莫海芳,康立山.求解TSP的混合遗传算法[J].计算机工程与应用,2007,43(18):40-41. 被引量:10
  • 5郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 6Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Research, 2006, 2 (3) : 287-308.
  • 7Parsopoulos K E, Vrahatis M N. Particle swarm optimization in multiobjective problems[C]. Proc of the ACM 2002 Symposium on Applied Computing. Madrid, 2002: 603-607.
  • 8Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multiobjective optimization using parallel vector evaluated particle swarm optimization [C]. Proc of the IASTED Int Conf on Artificial Intelligence and Applications, Innsbruck, 2004: 823-828.
  • 9Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6 (2): 182-197.
  • 10Li X D. A non-dominated sorting particle swarm optimizer for multiobjeetive optimization [J]. Lecture Notes in Computer Science, 2003, 2723: 37-48.

共引文献675

同被引文献49

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部