期刊文献+

一种多媒体社交网络安全风险评估方法 被引量:1

A SECURITY RISK ASSESSMENT METHOD FOR MULTIMEDIA SOCIAL NETWORKS
下载PDF
导出
摘要 新兴的多媒体社交网络MSN(Multimedia Social Networks)为多媒体内容的传播与分享提供了便利,然而用户之间随意的分享与传播受版权保护的数字内容使得数字版权管理DRM(Digital Rights Management)问题日益严重,该开放式网络场景面临数字内容的损害和版权侵犯等安全风险。基于传统的风险评估方法,并引入信任风险、用户需求等风险影响因子,采用定量和定性相结合的方法来评估MSN中用户之间数字内容传播中的风险,其中定量方法采用金融领域广泛使用的风险计算方法——VAR方法,定性方法是采用专家评分方式对非量化因素的评估。最后通过仿真实验验证了提出的风险评估方法的有效性,并揭示了风险损失与风险平均发生率、内容提供商的风险偏好态度之间的关系,即风险平均发生率偏大时(泊松分布图趋于正态分布),内容提供商厌恶风险时面临损失最小,其次是风险追求,而风险中立时面临损失最大。 Although the emerging multimedia social networks (MSN)provide convenience for disseminating and sharing the multimedia digital contents,but to share and spread the copyrighted digital contents between users at will causes the digital rights management (DRM) problem to be increasingly serious.In addition,the open internet scene also faces the security risks in digital contents detriment and copy-rights infringements.Based on conventional risks assessment approaches,we introduce the risk impact factors such as trust risk and user de-mands,and adopt an approach combining both the quantitative and qualitative analysis to assess the transmission risks of copyrighted digital contents among MSN users.Specifically,the value at risk (VAR),a risk calculation method widely used in financial field,is employed as the quantitative analysis approach.While the expert scoring,as a qualitative approach,is used to evaluate the non-quantifiable factors.Fi-nally,the effectiveness of the security risk assessment method proposed in the paper is verified by Ucinet-based social network simulation ex-periments.The relationships of risk loss with average rate of risk occurrence and risk preference of content providers are revealed.It is found that,when the average rate of risk occurrence is higher (with Poisson distribution tending to be normal distribution)and the content providers are risk-averse,the loss is lowest.The circumstance as to the content providers are risk-seeking leads to lower loss,while if the content pro-viders are risk-neutral,the loss will be the maximum.
出处 《计算机应用与软件》 CSCD 2015年第6期267-271,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61370220 61003234)
关键词 多媒体社交网络 数字版权管理 风险评估 算法 Multimedia social network Digital rights management Risk assessment Algorithm
  • 相关文献

参考文献14

  • 1Zhang Z Y.Digital Rights Management Ecosystem and its Usage Controls:A Survey[J].International Journal of Digital Content Technology&Its Applications,2011,5(3):55-272.
  • 2Zhang Z Y.Security,Trust and Risk in Digital Rights Management Ecosystem[C]//2010 International Conference on High Performance Computing and Simulation,France,2012.
  • 3Sachan A,Emmanuel S,Kankanhalli M.An efficient access control method for multimedia social networks[C]//Proceedings of the 2nd ACM SIGMM Workshop on Social Media,United States,2010.
  • 4Park J,Sandhu R,Cheng Y.A User-Activity-Centric Framework for Access Control in Online Social Networks[J].IEEE Internet Computing,2011,15(5):62-65.
  • 5Lian S Q,Chen X,Wang J W.Content distribution and copyright authentication based on combined indexing and watermarking[J].Multimedia Tools and Applications(Springer),2012,57(1):49-66.
  • 6Chung M B,Ko I J.Intelligent copyright protection system using a matching video retrieval algorithm[J].Multimedia Tools and Applications(Springer),2012,59(1):383-401.
  • 7Yeh L Y,Huang Y L,Joseph A D,et al.A Batch-Authenticated and Key Agreement Framework for P2P-Based Online Social Networks[J].IEEE Transactions on Vehicular Technology,2012,61(4):1907-1924.
  • 8Barbara C,Elena Ferrari,Sandrol M,et al.A probability-based approach to modeling the risk of unauthorized propagation of information in on-line social networks[C]//Proceedings of the 1st ACM Conference on Data and Application Security and Privacy,San Antonio,United states,Feb,2011.
  • 9Wang T,Srivatsa M,Agrawal D,et al.Modeling data flow in socioinformation networks:A risk estimation approach[C]//Proceedings of the 16th ACM Symposium on Access Control Models and Technologies,Innsbruck,Austria,June,2011.
  • 10Zhang Z Y,Wang K L.A Trust Model for Multimedia Social Networks[J].Social Networks Analysis and Mining(Springer),2013,3:969-979.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部