期刊文献+

波纹干扰抑制下内河CCTV系统运动船舶检测 被引量:7

Ripple-Driven Ship Detection in Inland Waterway CCTV System
下载PDF
导出
摘要 传统运动船舶检测方法不能较好的描述水面波纹起伏运动背景问题。针对水面波纹扰动问题,提出了一种融合视觉注意机制和改进的混合高斯背景建模技术的综合船舶检测策略。利用运动船舶导致水域空间不连续的特点,根据视觉注意机制生成显著图。船舶目标敏感区域对应较高的显著度,空域连续的水面区域呈现较低的显著度,对合成显著图进行自动阈值分割滤除波纹背景区域。将视觉注意机制与基于改进的混合高斯建模背景减除法检测结果进行融合得到运动船舶在当前帧的位置。实验结果表明,改进算法的船舶检测性能明显优于传统的混合高斯背景建模方法,同时对水面波纹扰动的鲁棒性能也显著提高。 Traditional background model methods can not model the ripples well. A hybrid saliency -based visual attention method and mixture of Gauss background model is presented to tackle the inevitable ripples. Saliency figures are obtained by the continuous motion between consecutive frames. Because the moving ship of interest gets higher saliency and the background gets lower, thus we employe a threshold manner to separate the foreground and back- ground. Then we fuse the detection results of saliency - based visual attention and mixture of Gauss background mod- el. The experimental results demonstrate that the proposed method achieves comparatively higher accuracy than origi- nal background subtraction method. Simultaneously, our method is more robust to ripples.
出处 《计算机仿真》 CSCD 北大核心 2015年第6期247-250,共4页 Computer Simulation
基金 国家自然科学基金项目(NSFC 51279152) 武汉理工大学2014年研究生自主创新基金自由探索项目(145211005)
关键词 水面波纹 船舶检测 混合高斯模型 视觉注意机制 Ripple Ship detection Mixture of Gauss Saliency - based visual attention
  • 相关文献

参考文献2

二级参考文献28

  • 1田巳睿,王超,张红.星载SAR舰船检测技术及其在海洋渔业监测中的应用[J].遥感技术与应用,2007,22(4):503-512. 被引量:13
  • 2Wren C R. Azarbayejani A,Darrell T, et al. Pfind-er: Real-time tracking of the human body[J]. IEEETransactions on Pattern Analysis and Machine Intelli-gence. 1997, 19(7): 780-785.
  • 3Friedman N,Russell S. Image vSegmentation in videosequences: A probabilistic approach[C] // Proceedingsof the 13th Conference on Uncertainty in Artificial In-telligence. USA: Morgan Kaufmann Publishers?1997: 175-181.
  • 4Stauffer Grimson W E L. Adaptive backgroundmixture models for real-time tracking [ J ]. IEEETransactions on Pattern Analysis and Machine Intelli-gence, 2000, 22(8) : 747-757.
  • 5Zivkovic Z, van der Heijden F. Efficient adaptivedensity estimation per image pixel for the ta‘sk ofbackground subtraction[J], Pattern Recognition Let-ters, 2006, 27(7): 773-780.
  • 6Piccardi M. Background subtraction technoques: Areview[C] // IEEE International Conference on Sys-tems, Man and Cybernetics. Piscataway NJ : IEEEPublishers, 2004: 3099-3104.
  • 7Zivkovic Z. Improved adaptive Gaussian mixturemodel for background subtraction[C] // InternationalConference on Pattern Recognition. Washington, DC:IEEE Computer Society, 2004 : 28-31.
  • 8KaewTraKulPond P,Bowden R. An improved adap-tive background mixture model for realtime trackingwith shadow detection [C] // Proceedings of the 2thEuropean Workshop on Advanced Video-Based SurveU-lance Systems. Boston: Kluwer Academic Publishers,2001:135-144.
  • 9Elgammal A, Duraiswami R,Harwood D,et al.Background and foreground modeling using nonpara-metric kernel density estimation for visual surveillance[J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163.
  • 10Magee R D. Tracking multiple vehicles using fore-ground, background and motion models [ J]. Imageand Vision Computing. 2004,22(2) : 143-155.

共引文献14

同被引文献32

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部