期刊文献+

基于线性约束H_∞滤波的道路目标跟踪算法研究 被引量:2

Road Targets Tracking Methods Research Based on Linear Constraints H_∞ Filtering
下载PDF
导出
摘要 针对地面道路目标跟踪噪声未知统计特性,以及道路约束条件,为提高跟踪精度,提出线性约束鲁棒H∞滤波跟踪算法。根据H∞滤波理论,给出无约束条件下H∞滤波目标跟踪算法流程;建立道路网路段的数学模型,在H∞滤波算法流程中添加线性约束条件,首先对过程噪声进行修正,然后构造拉格朗日方程,求出线性约束条件下H∞滤波最优估计值,并根据道路网参数修正状态协方差矩阵。蒙特卡洛仿真结果证明,在有色噪声和道路约束条件下,相对于传统的目标跟踪算法,提出的方法为跟踪性能的提高提供了依据。 A robust H∞ filtering algorithm with linear constraints was proposed to deal with ground moving target tracking with road constraints and noise whose statistic property is unknown. A moving target model was set up. The H∞ filtering algorithm without constraint was proposed based on H∞ filtering theory. Then a road segment model was described. With the constraints, Lagrangian equation was formed to get the optimal estimation of H∞ filtering under linear constraints. State covariance matrix was also modified according to the road parameter. The Monte Carlo simu- lation results show that the proposed algorithm has an obviously better performance in target tracking with colored noise and road constraints.
出处 《计算机仿真》 CSCD 北大核心 2015年第6期344-348,372,共6页 Computer Simulation
关键词 鲁棒滤波 道路约束 目标跟踪 H∞ Filtering Road constraints Target tracking
  • 相关文献

参考文献15

  • 1S Blackman, et al. Integration of a road network into a radar ground moving target tracking(GMTr) system and its performance evaluation [ C ]. Signal and Data Processing of Small Targets2009. 7445:74450S - 1.
  • 2T Kirubarajan, Y Bar - Shalom, Pattipati. K R. Ground Target Tracking with Variable Structure IMM Estimator [ J]. IEEE Trans on Aerospace and Electronic Systems, 2000,36( 1 ) :26 -46.
  • 3J G Herrero, J B Portas and J R Corredera. Using of Map Informa- tion for Tracking Targets on Airport Su~ace [ J ]. IEEE Trans on Aerospace and Electronic Systems,2003,39 (2) :675 -692.
  • 4G Kravaritis, B Mulqrew. Ground tracking using available struc- ture multiple model particle filter withvarying number of particles [ J ]. IEEE International Radar Conference, 2005,15 ( 3 ) : 837 - 841.
  • 5D Simon and T L Chia. Kalman filtering with state equality con- straints[ J ~. IEEE Transactions on Aerospace and Electronic Sys- tems, 2002,38( 1 ) :128 - 136.
  • 6G Zames. Feedback and optimal sensitivity: Model reference trans- formations, multiplicative seminorms and approximate inverses [ J ]. IEEE Transactions on Automatic Control, 1981,26 ( 2 ) :301 -322.
  • 7Q Ding and M Y Zhong. On designing H~ fault detection filter for Markovian jump linear systems with polytopic uncertainties [ C ]. International Journal of Innovative Computing, Informationand Control, 2010,6,3 (A) :995 - 1004.
  • 8C Jiang, Q L Zhang and D X Zou. Delay - dependent robust filte- ring for networked controlsystems with polytopic uncertainties[ C ]. International Journal of Innovative Computing Information and Con- trol, 2010,6( 11 ) :4857 -4868.
  • 9H Kulatunga and V Kadirkamanathan. Multiple H~ filter - based deterministic sequenceestimation in non- Gaussian channels[ C ]. IEEE Signal Processing Letters, 2006,13 (4) : 185 - 188.
  • 10D Simon. Optimal State Estimate: Kalman, H~ , and Nonlinear Approaches[C]. Hoboken, NJ: Wiley, 2006.

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部