期刊文献+

工业自动化DCS的网络优化通信过程仿真 被引量:1

Simulation of Communication Process for Industrial Automation Network Optimization of DCS
下载PDF
导出
摘要 采用传统方法进行DCS的网络通信优化时,由于网络通信的信息量比较多、传输速度较慢,会出现信息负载和信息之间互相干扰的现象,造成信息帧发生碰撞和系统通信的安全性及通信效果较差等问题。为此,提出基于小生境人工蜂群算法的工业自动化DCS的网络通信优化方法。针对DCS网络通信传输的特性,定义其通信优化性能的评价指标,并构建DCS网络信道模型,依据小生境人工蜂群算法的相关理论,将信息进行合理调整,首先计算获取种群个体的适应度值,然后与搜索子群中的最优解进行比较,获得更优解,直至达到最大迭代次数,输出搜索的最优结果,即可实现DCS的网络通信优化。实验结果表明,利用改进算法进行工业自动化DCS的网络通信优化,能够提高网络通信的抗干扰性、及时性和可靠性,并减少因干扰造成的数据丢失率,保证了工业自动化DCS的网络通信性能。 An optimization method of DCS for industrial automation network communication is presented based on niche artificial colony algorithm. According to the characteristic of DCS network communication transmission, the e- valuation index of optimal performance is defined, the communication channel model is established, the DCS system network is built based on related theory of niche artificial colony algorithm, and the information is adjusted reasona- bly. Firstly, the fitness value for individual species is calculated, and then it is compared with the optimal solution in the searching subgroup, and a more optimal solution is got. Until the maximum number of iterations, the optimal searching results are obtained, and the optimization of DCS network communication can be realized. The experimen- tal results show that the proposed algorithm can improve the anti - interference, timeliness and reliability of network communication, and reduce data lost.
作者 高利军
出处 《计算机仿真》 CSCD 北大核心 2015年第6期390-393,共4页 Computer Simulation
基金 国家自然科学基金(50265002 2014-2018) 内蒙古自然科学基金项目(2009MS0802)
关键词 工业自动化 数控系统 网络通信优化 小生境人工蜂群算法 Industrial automation DCS Network communication optimization Niche artificial colony algorithm
  • 相关文献

参考文献9

二级参考文献29

  • 1Mahadevan and KM. Sivalingam. Architecture and Experi- mental Framework for Supporting QoS in Wireless Net- works Using Differentiated Services [J]. ACM/Battzcr Mo- bile Networks and Applications Journal [J]. 2001, 6(4): 385-395.
  • 2L E Akyildiz, Jiang Xie and S. Mohanty. A Survey of Mobil- ity Management in Next-generation All IP-based Wireless System [J]. IEEE Wireless Communications, 2004, 11(4): 16-25.
  • 3Bongkyo Moon and Hamid Aghvami. Diffserv Extensions for QoS Provisioning in IP Mobility Environments [J]. IEEE Wireless Communications. 2003, 10(5): 38-44.
  • 4Akyildiz I F, Pompili D, Melodia T. Under-water acoustic sensor networks: research ch-allenges [J]. Ad Hoc Net- works (S1570-8705), 2005, 3(3): 257-279.
  • 5J.Kennedy and R.C.Eberhart,"Particle swarm optimization," in Proceedings of IEEE international conference on neural networks,Piscataway,1995.
  • 6Y.S.G.M.Haibin Duan,Qinan Luo,"Hybrid particle swarm optimization and genetic algorithm for multi-uav formation reconfiguration," in IEEE Computational Intelligence Magazine,2013.
  • 7Amelia W.Azman,Abbas Bigdeli,Yasir Mohd-Mustafah,Morteza Biglari-Abhari and Brian C.A Bayesian network-based framework with Constraint Satisfaction Problem (CSP) formulations for FPGA system design[J] .Lovell.ASAP 2010.
  • 8Shulin Yang and Kuo-Chu Chang,Comparison of Score Metrics for Bayesian Network Learning[J] .IEEE Transactions On SMC-Part A.2002.
  • 9陈瑞军.DCS在电厂中的应用及发展方向探讨[J].内蒙古电力技术,2007,25(6):22-24. 被引量:11
  • 10刘文东,孙蓉,张星,卫巍.GPRS无线网络优化探讨[J].电信技术,2008(2):59-62. 被引量:3

共引文献13

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部