期刊文献+

认知自组网分布式频谱感知最优协作算法

The optimal spectrum sensing algorithm in distributed cognitive radio Ad-hoc networks
下载PDF
导出
摘要 认知无线电技术使得自组织网络节点能够充分利用空闲频谱资源,提高了传输性能。通过协作频谱感知,可有效解决由于无线信道存在阴影、噪声和衰落等情况导致的单节点感知准确性偏低。为了解决梯度算法随着协作节点数量增大后计算复杂度变高,文中提出部分梯度算法ψ-GBCS,该模型通过基于SNR的动态阈值保证了感知准确性,同时通过最佳协作节点数提高了感知效率。仿真结果表明,该模型下,综合评估系统效率和性能的J函数值提高37%,能耗降低50%,有效保证大规模认知自组网频谱感知的鲁棒性,降低了对主用户的干扰及设备功耗。 In Ad-hoc networks,the unused spectrum resources can be effectively sensed by cognitive radio technology, and transmission performance will be improved. Cooperative spectrum sensing is necessary because a single node cannot detect the existence accurately due to shadowing,noise and fading in wireless channels. Gradient based cooperative sensing( GBCS) is a widely used scheme in distributed cooperative spectrum sensing. However,as the nodes of cognitive radio Ad-hoc networks increasing,the efficiency of GBCS degrades because the complexity rises. To solve the problem,a partial-GBCS( ψ-GBCS) scheme is proposed in this paper. The roc performance and energy consumption are balanced by SNR-based adaptive threshold and optimal cooperative numbers. The simulation results show that under the proposed scheme,the value of object function,which evaluates the performance and energy efficiency of the system,is larged improved by 37%,and the robustness of cooperative spectrum sensing is guaranteed in large scale cognitive Ad-hoc networks. Meanwhile,the interference to primary users is suppressed and equipment power consumption is reduced.
出处 《信息技术》 2015年第6期32-36,41,共6页 Information Technology
基金 上海市经信委战略性新兴产业项目(BY2JJXA1001) 中科院先导服务海云计算项目(XDA06011100)
关键词 自组织网络 认知无线电 协作频谱感知 梯度优化 Ad-hoc networks cognitive radio cooperative spectrum sensing optimization of GBCS
  • 相关文献

参考文献13

  • 1Ramin H.Ad hoc Networks:Fundamental,Properties and Network Topologies[M].Springer,2006.
  • 2Haykin S.Cognitive radio:brain-empowered wireless communications[J].IEEE Selected Areas in Communications,2005,23(2):201-220.
  • 3Mitola J,Magurire G Q.Cognitive radio:making software more personal[J].IEEE Personal Communication,1999,6(4):13-18.
  • 4Yucek T,Arslan H.A survey of spectrum sensing algorithms for cognitive radio applications[J].Communication Surveys and Tutorials,2009,11(1):116-130.
  • 5Ganesan G,Ye Li.Cooperative Spectrum Sensing in Cognitive Radio,Part II:Multiuser Networks[J].Wireless Communications,IEEE Transactions on,2007,6(6):2214-2222.
  • 6Lan F Akyildiz,Won-Yol Lee,Kaushik R.Chowdhury.Spectrum management in cognitive radio ad hoc networks[J].IEEE Network2009,23(4):6-12.
  • 7Peh E,Liang Ying-Chang.Optimization for cooperative sensing in cognitive radio networks[C].Wireless Communications and Networking Conference,Mar.2007:27-32.
  • 8Ghasemi A,Sousa E S.Asymptotic performance of collaborative spectrum sensing under correlated log-normal shadowing[J].IEEE Communications Letters,2007,11(1):34-36.
  • 9Chen Yun-fei.Optimum number of secondary users in collaborative spectrum sensing considering resources usage efficiency[J].IEEE Communications Letters,2008,12(12):877-879.
  • 10Wu Su-wen,Zhao Ming,Zhu Jin-kang.Optimal number of secondary users through maximizing utility in cooperative spectrum sensing[C].Vehicular Technology Conference Fall,2009:1-5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部