期刊文献+

基于分离有限状态模型的呼吸预测算法 被引量:2

Respiratory prediction algorithm based on a separated finite state model
原文传递
导出
摘要 由呼吸运动导致的肿瘤位置变化严重影响放射治疗精度,需要准确预测呼吸位置以实现系统的实时在线误差补偿。该文提出了一种基于分离有限状态模型的呼吸预测算法,将呼吸基线与起伏相分离,并分别使用局部加速度恒定的Kalman滤波和改进的有限状态模型进行预测。改进的有限状态模型将呼吸数据按照邻域特征分为线性、非线性和不规则3种状态,根据每种状态的特点用不同的模型进行预测。对25组患者的实际呼吸数据进行预测,并和传统预测算法进行对比,结果表明:分离有限状态模型呼吸预测算法的均方误差和最大误差明显下降,尤其对于有明显基线漂移的呼吸状态,该算法的预测误差几乎不受影响。 Respiratory tumor motion seriously affects the accuracy of radiation therapy, so predictions of the respiratory motion in advance will allow real-time compensation. A respiratory motion prediction algorithm is developed based on a separated finite state model. The baseline and the up-and-clown motion are separated and then predic- ted using a Kalman filter for the baseline and an improved finite state model for the up-and-down motion. The respiration data is represen- ted by linear, nonlinear and irregular states in the finite state model. Different models are used for the predictions according to the charac- teristics of each state. This algorithm is used to predict the respira- tory motion for 25 patients. The results show that the average root mean square error and the maximum error over all the patients are significantly lower than for traditional prediction algorithms. Espe- cially for the respiratory motion with baseline drift, the algorithm er- ror is almost unaffected.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第3期257-265,共9页 Journal of Tsinghua University(Science and Technology)
基金 北京市科技计划项目(Z141100000514015) 清华大学摩擦学国家重点实验室重点项目(SKLT12A03) 清华大学自主科研计划课题学科交叉专项项目(20111081026)
关键词 呼吸预测 基线漂移 KALMAN滤波 有限状态模型 respiratory prediction baseline drifting Kalman filter finite state model
  • 相关文献

参考文献14

  • 1Seppenwoolde Y,Shirato H,Kitamura K,et al.Precise and real-time measurement of 3-D tumor motion in lung due to breathing and heartbeat,measured during radiotherapy[J].International Journal of Radiation Oncology Biology Physics,2002,53(4):822-834.
  • 2Clifford M A,Banovac F,Levy E,et al.Assessment of hepatic motion secondary to respiration for computer assisted interventions[J].Computer Aided Surgery,2002,7(5):291-299.
  • 3Hanley J,Debois M M,Mah D,et al.Deep inspiration breath-hold technique for lung tumors:The potential value of target immobilization and reduced lung density in dose escalation[J].International Journal of Radiation Oncology Biology Physics,1999,45(3):603-611.
  • 4Rosenzweig K E,Hanley J,Mah D,et al.The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer[J].International Journal of Radiation Oncology Biology Physics,2000,48(1):81-87.
  • 5Wagman R,Yorke E,Ford E,et al.Respiratory gating for liver tumors:Use in dose escalation[J].International Journal of Radiation Oncology Biology Physics,2003,55(3):659-668.
  • 6Tchoupo G N.Predictive Feedback Control of the Treatment Couch for Tumor Motion Compensation during Radiotherapy[D].Richmond,VA,USA:Virginia Commonwealth University,2008.
  • 7Kalet A,Sandison G,Wu H,et al.A state-based probabilistic model for tumor respiratory motion prediction[J].Phys Med Biol,2010,55(24):7615-7631.
  • 8Jin J,Ren L,Liu Q,et al.Combining scatter reduction and correction to improve image quality in cone-beam computed tomography(CBCT)[J].Medical Physics,2010,37(11):5634-5644.
  • 9Murphy M J,Dieterich S.Comparative performance of linear and nonlinear neural networks to predict irregular breathing[J].Phys Med Biol,2006,51(22):5903-5914.
  • 10Wu H,Sharp G C,Salzberg B,et al.A finite state model for respiratory motion analysis in image guided radiation therapy[J].Phys Med Biol,2004,49(23):5357-5372.

二级参考文献21

  • 1莫惠栋.回归分析中的病态矩阵及其改进[J].作物学报,2006,32(1):1-6. 被引量:9
  • 2Schweikard A, Glosser G, Bodduluri M, et al. Robotic motion compensation for respiratory movement during radiosurgery [ J ].Comput Aided Surg, 2000, 5(4) : 263 - 277.
  • 3Torsten R, Joachim D. Markerless real-time 3-D target region racking by motion backprojection from projection images[J]. IEEE Transactions on Medical Imaging, 2005, 24( 11): 1455- 1468.
  • 4Tacke M, Nill S, Oelfke U. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer [ J ]. Phys Med Biol, 2007, 52:N505 - N512.
  • 5Berbeco R, Jiang SB, Sharp GC, et al. Integrated radiotherapy imaging system (IRIS): design considerations of turnout tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors [J]. Phys Med Biol, 2004, 49: 243- 255.
  • 6Weiss E, Vorwerk H, Richter S, et al. Interfractional and intrafractional accuracy during radiotherapy of gynecologic carcinomas: a comprehensive evaluation using the ExacTrac system [J]. Radiat Oncol Biol Phys, 2003, 56(1): 69-79.
  • 7Ruan D, Fessler JA, Baiter JM, et al. Exploring breathing pattern irregularity with projection-based method [J]. Med Phys, 2006, 33 (7) : 2491 - 2499.
  • 8Ruan D, Fessler JA, Baiter JM, et al. Static and recursive estimation of respiratory motion with instantaneous phase adjustment [R]. VCII 7, 2007.
  • 9Sharp GC, Jiang SB. Prediction of respiratory tumour motion for real-time image-guided radiotherapy [J]. Phys Med Biol, 2004, 49:425 - 440.
  • 10Keall PJ, Vedam SS, George R, et al. Respiratory regularity gated 4D CT acquisition: concepts and proof of principle [ J]. Australas Phys Eng Sci Med, 2007, 30(3): 211- 220.

共引文献5

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部