期刊文献+

面向多区域视频监控的运动目标检测系统 被引量:6

System of multi-regions moving object detection in video surveillance
下载PDF
导出
摘要 为了实现视频监控现场多区域运动目标检测,分析了传统运动检测算法的不足,结合帧间差分法和背景差分法,提出背景动态更新的运动检测算法。该算法能自适应背景的变化,减少由背景变化造成的误检测。构建基于FPGA的视频监控系统,在FPGA上用该算法实现了640pixel×480pixel,30帧/s视频信号流的运动目标实时检测。系统提供了分区域运动目标检测的功能。检测区域的大小、位置和个数可通过简单的按键操作进行设定。测试结果表明,系统可以实时地对进入划定区域的运动目标进行检测和闪烁告警,且资源占用较少,适合在小规模的FPGA上进行实现。 In order to realize multi-regions moving obj ect detection in video surveillance,the shortage of traditional moving obj ect detection algorithm is analyzed.Combining the background subtraction al-gorithm and frame difference algorithm,we propose a method which dynamically refresh the back-ground.This algorithm can adapt with the background automatically,and reduce error detections caused by the change of background.We build a video surveillance system based on a FPGA chip,and implement the algorithm on the chip.The system can detect moving object in a 640 pixel×480 pixel, 30 frames/s video stream.The system also provides a function which detects moving object in inde-pendent regions.The number,size and location of the regions can be set easily by simple keystrokes. The system’s configuration is convenient,and has strong flexibility.It can be utilized in various fields such as intelligent surveillance and production safety.
出处 《液晶与显示》 CAS CSCD 北大核心 2015年第3期484-491,共8页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61340051) 福州市科技计划项目(No.2013-G-93) 福建省教育厅省属高校专项课题(No.JK2014003)
关键词 视频监控 运动检测 背景动态更新 FPGA video surveillance moving detection background dynamic refresh FPGA
  • 相关文献

参考文献10

二级参考文献46

  • 1陈凤东,洪炳镕.基于动态阈值背景差分算法的目标检测方法[J].哈尔滨工业大学学报,2005,37(7):883-884. 被引量:43
  • 2倪崇嘉,刘文奇,张爱英.基于数学形态学的视频图像序列中的运动目标检测[J].计算机工程与科学,2006,28(6):69-70. 被引量:6
  • 3王磊,吴晓娟,俞梦孙.驾驶疲劳/瞌睡检测方法的研究进展[J].生物医学工程学杂志,2007,24(1):245-248. 被引量:35
  • 4Lipton A. Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [J]. IEEE Work- shop Application of Computer Vision, 1998, 17(9):8-14.
  • 5Barron J. Fleet D , Beauchemin S. Performance of optical flow techniques[J]. International J. Computer Vision, 1994, 12(1):42-77.
  • 6Jain R. Difference and accumulative difference pictures in dynamic scene analysis[J].Image and Vision Computing, 1984,2(2) :99-108.
  • 7GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 8Lipton A J, Fujiyoshi H, Patit R S. Moving target classification and tracking from real-time video [C]//Proc. IEEE Workshop on Applications of Computer, Princeton, NJ:IEEE, 199818-14.
  • 9Canny J. A computational approach to edge detection[J].IEEE Transactions on PAMI, 1986,8(6):669-698.
  • 10Md Mosharrof Hossain Sarker and Andy Sloane. I TGSF /TLoG filter with optical flow technique for large I motion detection[J]. Machine Graphics & Vision InternationalJournal, 2007, 16(3): 207-219.

共引文献144

同被引文献75

  • 1雷蕾,李言俊,张科.图像目标质心快速搜索算法[J].红外技术,2007,29(9):548-551. 被引量:11
  • 2PARIS C. Vibration tests on the preloaded LARES satellite and separation system [J]. Aerospace Science and Technology, 2015, 42: 470-476.
  • 3ZHI X Y, HOU Q Y, SUN X, et al.. Degradation and restoration of high resolution TDICCD imagery due to satellite vibrations [C]. International Symposium on Optoelectronic Technology and Application 2014,International Society for Optics and Photonics, 2014: 93012I-1-93012I-8.
  • 4LIN CH, LIN B Y, LEE K Y, et al.. Radiometric normalization and cloud detection of optical satellite images using invariant pixels [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 107-117.
  • 5ZHU Z, WANG S X, WOODCOCK C E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images [J]. Remote Sensing of Environment, 2015, 159: 269-277.
  • 6JAYADEVAN V T, RODRIGUEZ J J, CRONIN A D. A new contrast-enhancing feature for cloud detection in ground-based sky images [J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(2): 209-219.
  • 7WU T J, GE Y, WANG J, et al.. A WTLS-based method for remote sensing imagery registration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 102-116.
  • 8WU Y, MA W, GONG M, et al.. A novel point-matching algorithm based on fast sample consensus for image registration [J]. Geoscience and Remote Sensing Letters, IEEE, 2015, 12(1): 43-47.
  • 9KUPFER B, NETANYAHU N S, SHIMSHONI I. An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images [J]. Geoscience and Remote Sensing Letters, IEEE, 2015, 12(2): 379-383.
  • 10JIANG J, ZHANG S, CAO S. Rotation and scale invariant shape context registration for remote sensing images with background variations [J]. Journal of Applied Remote Sensing, 2015, 9(1): 095092-1-095092-20.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部