期刊文献+

基于局部敏感直方图的分布场跟踪算法研究 被引量:1

Distribution fields tracking method based on locality sensitive histograms
下载PDF
导出
摘要 文章提出了一种基于局部敏感直方图的分布场目标表示方法,克服了原始分布场跟踪方法对光照和参数敏感的缺点。利用局部敏感直方图与分布场模型表示目标空间结构上的相似性,提出利用局部敏感直方图作为一种新的分布场构建方式来表示目标。与分布场目标表示方法相比,局部敏感直方图对像素所在层取更大的权值,因此能够更好地保留目标空间结构。在基准视频序列上的实验结果表明,与其他具有代表性的算法相比,基于局部敏感直方图的分布场跟踪算法用固定的一组参数取得了最佳的跟踪结果。 A new distribution fields tracking method based on locality sensitive histograms is presented. It overcomes the limitation of the original distribution fields tracking method for light change and sen- sitiveness to parameters. By the similarity between locality sensitive histograms and distribution fields in representing the spatial structure, the new method uses locality sensitive histograms as a new kind of distribution fields to represent a target. Compared with the target representation method based on distribution fields, locality sensitive histograms assign a greater weight for the layer of pixels, so it can keep better target spatial structure. The testing results on challenging benchmark video sequences show that the proposed method with a fixed set of parameters obtains the best tracking performance a- mong the common representative methods.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期769-774,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61003151) 中央高校基本科研业务费专项基金资助项目(QN2013055 QN2013062)
关键词 目标跟踪 目标表示 分布场 局部敏感直方图 target tracking target representation distribution field locality sensitive histogram
  • 相关文献

参考文献11

  • 1Yilmaz A,Javed O,Shah M. Object Tracking: a survey[J]. ACM Computing Surveys,2006,38(4) : 13.
  • 2Zhang Kaihua, Song Huihui. Real-time visual trackingvia online weighted multiple instance learning[J]. Pattern Rec- ognition 2013,46(1) :397-411.
  • 3Ning Jifeng, Zhang Lei, Zhang D, et al. Robust mean shift tracking with corrected background-weighted histogram [J]. IET Computer Vision, 2012,6(1).. 62-69.
  • 4Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking[J]. IEEE Trans Pattern Anal Machine Intell, 2003,25(5) :564-577.
  • 5Ning Jifeng, Zhang Lei, Zhang D, et al. Robust mean stilt tracking with corrected background-weighted histogram [J]. IET Computer Vision, 2012,6( 1 ) : 62- 69.
  • 6Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//IEEE Conference on Com- puter Vision and Pattern Recognition, 2001 : 511 - 518.
  • 7Tuzel O, Porikli F, Meer P. Region covariance: a fast de- scriptor for detection and classification[C]//Computer Vi- sion ECCV, 2006 : 589- 600.
  • 8Babenko B, Yang M, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2011, 33: 1619-1632.
  • 9李菊,余烨,戴欢,李克清,苏勇刚,曹明伟.基于颜色和LBP多特征的mean shift的跟踪算法[J].合肥工业大学学报(自然科学版),2014,37(5):578-581. 被引量:5
  • 10SevillmLara L, Learned-Miller E. Distribution fields for tracking[C]//IEEE Ca3nference on Computer Vision and Pattern Recognition, 2012 : 1910- 1917.

二级参考文献8

  • 1Cheng Y. Mean shift, mode seeking and clustering [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(8) : 790--799.
  • 2徐琨.交通视频监控中的车辆检测与跟踪方法研究[D].西安:长安大学,2009.
  • 3Mu Yadong, Yan Shuicheng, Liu Yi, et al. Discriminative lo- cal binary patterns for human detection in personal album [C]//CVPR, 2007.. 11 -- 18.
  • 4刘恋.基于meanshift跟踪算法[D].北京:中国科学院.2011.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (2) : 564-- 577.
  • 6左军毅,梁彦,潘泉,赵春晖,张洪才.基于多个颜色分布模型的Camshift跟踪算法[J].自动化学报,2008,34(7):736-742. 被引量:30
  • 7贾慧星,章毓晋.基于梯度方向直方图特征的多核跟踪[J].自动化学报,2009,35(10):1283-1289. 被引量:24
  • 8蒋建国,李明,齐美彬.基于TMS320DM6437的运动目标实时检测与跟踪[J].合肥工业大学学报(自然科学版),2011,34(7):1007-1010. 被引量:6

共引文献4

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部