期刊文献+

基于几何与粗糙深度信息的候选车辆生成方法 被引量:1

Vehicle Candidate Generation Based on Geometry and Coarse Depth Information
下载PDF
导出
摘要 基于单目视觉的车辆识别通常分为候选车辆生成(CG)和候选车辆验证(CV)两个步骤。传统的CG步骤往往采用遍历的方法,获得的候选车辆窗口数量庞大,增加了后续CV阶段的计算耗时,难以满足实际应用的实时性要求。本文提出一种基于几何和深度信息的CG方法,在不丢失有效车辆区域的前提下极大减少了候选车辆的数量。该方法首先将图像以超像素形式进行分块,同时利用预先训练的Adaboost分类器获取超像素图像的几何信息和粗糙深度信息。然后利用车辆在世界坐标系下的垂直度、位置和尺寸等先验知识,采用了一种分层聚类策略,合并图像中属于车辆的超像素块并生成候选车辆。与传统算法的比较结果表明,本方法以检测率的微小降低为代价,实现了候选车辆窗口数量的大幅度减少。 Monocular vision based vehicle identification are often divided into two steps: candidate generation (CG) and candidate validation (CV). Traditional CG procedure adopting ergodic approach often generates a large amount of candidate windows, which dramatically increase the calculation time in CV phase and hence is hard to meet the real-time requirements of practical application. In this paper a novel vehicle candidate generation meth- od is proposed based on geometry and depth information, which can greatly reduce the number of candidate windows generated. With the method, firstly images are divided into super pixel regions, and the geometry information and coarse depth information of images are obtained with pre-trained Adaboost classifier. Then by using the prior knowl- edge of vehicles (verticality, location and size) in global coordinate system, a hierarchical clustering strategy is adopted to merge the vehicle super pixel blocks in images and generate vehicle candidates. The results of comparison with traditional algorithms show that the method proposed achieves a great reduction in the number of candidate windows with a cost of minor drop in detection rate.
出处 《汽车工程》 EI CSCD 北大核心 2015年第5期593-598,共6页 Automotive Engineering
基金 国家自然科学基金(61403172 51305167和61203244) 交通运输部信息化项目(2013364836900) 中国博士后基金(2014M561592) 江苏省六大人才高峰项目(2014-DZXX-040) 江苏省自然科学基金(BK20140555) 江苏省博士后基金(1402097C) 江苏大学高级专业人才科研启动基金(12JDG010和14JDG028)资助
关键词 车辆识别 单目视觉 候选车辆生成 超像素 vehicle detection monocular vision vehicle candidate generation super pixels
  • 相关文献

参考文献17

  • 1Gehrig S, Stein F. Collision Awidance fi," Vehiele-Folh)wing Sys- tems[ J ]. IEEE Transaction on Intelligent T,'ansportation Systems, 2007,8 : 233-244.
  • 2Giseok K, Jae-soo C. Vision-based Vehicle I)etecti(m and luler-ve- hiele Distance Estimation[ C]. 12tl International Cont','enee ,,n Control, Automation and System, 2012: 625-629.
  • 3Lan .], Zhang M. A New Vehicle [)etection AIg(,rithm fir Real-lime hnage Processing System [ C ] . 2010 International Conferen'e tm Computer Application and System Modeling, 2010: 1-4.
  • 4Acunzo D, Zhu Y, Xie B. Context-adaptive Approach for Vehicle Detection Under Vaing l,ighting Conditions [ C ], IEEE Interna- tional Conference on Intelligent Transportation Systems Conference, 2007 : 654-660.
  • 5Lili H. Roadside Camera Calibration and Its Application in I.englh- based Vehicle Classification[ C]. 2nd International Asia Cont'erenee on Informatics in Control, Automation and Robotics (CAR) ,2010, 2 : 329-332.
  • 6陈涛,谭华春,冯广东,王震宇,魏朗.运动车辆检测的APG-TR算法[J].交通运输工程学报,2012,12(4):100-106. 被引量:1
  • 7Sun Z, Bebis G, Miller R. On-road Vehicle Detection Using Evolu- tionary Gabor Filter Optimization[ J]. EEE Transactions on Intel- ligent Transportation System, 2005, 6 ( 2 ) : 125-137.
  • 8Kim Giseok, Cho Jae-Soo. Vision-based Vehicle Detection and In- ter-Vehicle Distance Estimation[ C ]. 2012 12th International Con- ference on Control, Automation and Systems, Jeju Island, Korea, 2012, 1:625-629.
  • 9王海,张为公,蔡英凤.Design of a road vehicle detection system based on monocular vision[J].Journal of Southeast University(English Edition),2011,27(2):169-173. 被引量:5
  • 10Felzenszwalb P, Huttenlocher D. Efficient Graph-based Image Segmentation [ J ] . International Journal of Computer Vision, 2004, 59(2) : 167 - 181.

二级参考文献31

  • 1简林莎,段宗涛,周兴社.智能运输系统信息平台[J].长安大学学报(自然科学版),2006,26(2):81-83. 被引量:8
  • 2SHEN Z, TOH K C, YUN S. An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach[J]. SIAM Journal on Imaging Sciences, 2011, 4(2) : 573-596.
  • 3WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: exact recovery of corrupted low rank matrices via convex optimization[C]//BENGIO Y, SCHUURMANS D, LAFFERTY J, et al. Advances in Neural Information Proceeding Systems. Cambridge: MIT Press, 2009:2080 2088.
  • 4CANDES E J, LI Xiao-dong, MA Yi, et al. Robust principal component analysis[J]. Journal of the ACM, 2011, 58(3): 1-39.
  • 5LI Yin, YAN Jun-chi, ZHOU Yue, et al. Optimum subspace learning and error correction for tensors[C]//DANILLIDIS K, MARAGOS P, PARAGIOS N. Proceedings of the 11th European Conference on Computer Vision. Crete: IEEE, 2010, 790-803.
  • 6TSENG P, YUN S. Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization [J]. Journal of Optimization Theory and Applications, 2009, 140(3) : 513-535.
  • 7ZHOU Zi ban, LI Xiao-dong, WRIGHT J, et al. Stable principal component pursuit [C]// IEEE. International Symposium on Information Theory. Texas: IEEE, 2010: 1518-1522.
  • 8CANDES E J, RECHT B. Exact matrix completion via convex optimization [J]. Foundations oil Computational Mathematics, 2009, 9(6): 717-772.
  • 9TSENG P. On accelerated proximal gradient methods for convex-concave optimization[R]. Washington DC: University of Washington, 2008.
  • 10BECK A, TEBOULLE M. A fast iterative shrinkage-thresh- olding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

共引文献4

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部