摘要
主要采用上下解方法,并结合极大值原理证明了一类奇异非线性Dirichlet问题-Δu=b(x)g(u)+λa(x)f(u),u>0,x∈Ω,u|Ω=0解的存在性.其中Ω为Rn(n≥2)中的有界光滑区域,λ<0,g在0处有奇性,且g'(s)<0,s∈(0,∞),f∈C([0,∞),[0,∞))∩C1((0,∞)),b,a>0在Ω上局部Hlder连续.
By constructing a pair of sub- and super-solutions of nonlinear elliptic equation and combining with the maximum principle, we prove the existence of solutions to a singular nonlinear Dirichlet problem : -△u=b(x)g(u)+λa(x)f(u),u〉0,x∈Ω,u| Ω=0. Here Ω is a bounded smooth domain in Rn(n≥2), g is singular at zero, and g'(s)〈0,s∈(0,∞) , and f∈C([0,∞),[0,∞))∩C1((0,∞)),b,a〉0 is local Holder con- tinuous in Ω.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2015年第3期162-164,共3页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
烟台大学青年基金资助项目(SX12Z03)