期刊文献+

基于DKPCA的聚合釜故障诊断研究 被引量:2

Fault of Polymerization Reactor Based on DKPCA Algorithm
下载PDF
导出
摘要 针对聚合釜聚合生产聚氯乙烯过程的故障种类较多、故障类型复杂等特点,同时生产过程存在严重的非线性、动态性,提出一种基于DKPCA的故障诊断算法.过程中分别采用主元分析、核主元分析和动态核主元分析分别对PVC聚合过程进行故障诊断,其中主元分析和核主元分析的错报率较高,而动态核主元分析对PVC聚合过程能够得到较好的诊断结果,从而可以对实际的PVC聚合生产过程进行监测. For the characteristics of PVC polymerization process that fault types are varied and complex,while the production process is serious nonlinear and dynamic,a fault diagnosis algorithm is proposed based on DKPCA. In the process component analysis,kernel principal component analysis and dynamic kernel principal component analysis are used to carry out fault diagnosis on the PVC polymerization process. PCA and KPCA misstatements rate is serious,and dynamic kernel principal component analysis for PVC polymerization process fault diagnosis has better diagnostic result. The actual process for the production of PVC polymerization can be monitored.
作者 高淑芝 赵娜
出处 《沈阳化工大学学报》 CAS 2015年第2期178-182,185,共6页 Journal of Shenyang University of Chemical Technology
关键词 PVC聚合 故障诊断 动态核主元分析 PVC polymerization fault diagnosis dynamic kernel principal component analysis
  • 相关文献

参考文献9

二级参考文献32

  • 1杨丽君,郑绳楦.基于RS和多类SVM的变压器故障诊断[J].仪器仪表学报,2005,26(z2):613-615. 被引量:7
  • 2王丽舫,朱群雄.基于小波理论的主元分析在故障诊断中的研究与应用[J].化工自动化及仪表,2004,31(6):25-28. 被引量:18
  • 3肖健梅.基于径向基函数神经网络的柴油机故障诊断[J].仪器仪表学报,2005,26(4):355-357. 被引量:21
  • 4许琦,刘德仿,李永生.基于粗糙集理论旋转机械频域特性的故障诊断[J].吉林大学学报(理学版),2007,45(4):617-623. 被引量:1
  • 5M.K. Hartnett, G. Lightbody, and G.W. Irwin, Identification of state models using principal components analysis [ J ]. Chemomet- rics and Intelligent Laboratory Systems, 1999,46 ( 1 ) : 181-196.
  • 6S. Yoon, and J. F. MacGregor, Principal-component analysis of multiscale data for process monitoring and fault diagnosis s [ J ]. Aiche Journal, 2004,50 ( 2 ) :2891-2903.
  • 7X.M. Tian, and X. G. Deng, A Fault Detection Method Using Multi-Scale Kernel Principal Component Analysis s [ J ]. Proceed- ings Of The 27TH Chinese Control Conference,2008,6 (3) :25-29.
  • 8S. Wold, K. Esbensen, P. Geladi. Principal component analysis [ J]. Chemometrics and Intelligent Laboratory Systems. 1987,2 (1- 3) :37-52.
  • 9B. Moore,Principal component analysis in linear systems:Control- lability, observability, and model reduction. Automatic Control s [ J ]. IEEE Transactions on 2002,26 ( 1 ) : 17-32.
  • 10Ku, W. F. , R. H. Storer and C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis [ J ]. Che- mometrics And Intelligent Laboratory Systems, 1995,30 ( 1 ) : 179- 196.

共引文献18

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部