摘要
正项等差数列幂和式只给了下界估计,本文借助于函数的凹凸性理论和拉格朗日中值公式,给出正项等差数列幂和式的上界估计,并对已有的下界估计结论进行局部加强.最后,将全部结论综合得到关于正项等差数列幂和式的双边估计.
The lower bound estimation of Positive Arithmetic sequence power and type are given. Howto give the estimation of upper bound. Howto build on bilateral estimationof the positive arithmetic sequence power and style. According to the different range of index,we strengthen the upper bound estimation. And then get bilateral estimation on positive arithmetic sequence power and style. With the help of concavo convex function theory and Lagrange's formula,the upper bound of power Positive arithmetic sequence power and type are given. And we get the lower bound on the existing estimating conclusion by local reinforcement. Finally,the conclusion obtained is all about the bilateral estimation of Positive arithmetic sequence power and style
出处
《沈阳化工大学学报》
CAS
2015年第2期183-185,共3页
Journal of Shenyang University of Chemical Technology
关键词
正项等差数列
幂和式
凹函数
拉格朗日中值公式
positive arithmetic sequence
power and type
concave function
Lagrange' s formula