期刊文献+

基于OPTICS的变电设备状态监测异常数据过滤算法 被引量:7

An OPTICS Clustering-Based Abnormal Data Filtering Algorithm for Condition Monitoring of Power Equipment
下载PDF
导出
摘要 针对变电一次设备状态监测中普遍存在的异常数据问题,提出了一种基于点排序识别聚类结构(Ordering Points to Identify the Clustering Structure,OPTICS)的状态监测异常数据过滤算法。通过对一次设备状态监测的历史数据进行异常数据特征分析,建立了基于密度聚类的异常数据过滤机制。并以某110 k V变电站一次设备变压器油色谱以及GIS SF6密度微水实验为例,对该算法的异常数据检测效果进行了验证。该算法与传统异常数据过滤算法的对比试验结果表明,该算法能够准确地识别异常数据的特征,有效过滤状态监测中的异常数据,显著降低噪声干扰,从而提高数据的可靠性。 Aiming at the widespread abnormal data in substation primary equipment condition monitoring, this paper proposes an OPTICS(Ordering Points to Identify the Clustering Structure, OPTICS) clustering-based condition monitoring abnormal data fi ltering algorithm. Through the characteristic analysis of historical primary equipment condition monitoring data, the abnormal data fi ltering mechanism was built based on density clustering. The effectiveness of detecting abnormal data was verifi ed through the experiments on a 110 k V substation equipment transformer oil chromatography and the GIS SF6 density micro water. Compared with traditional abnormal data fi ltering algorithms, the OPTICS clustering-based algorithm has shown signifi cant performance in identifying the features of abnormal data as well as fi ltering condition monitoring abnormal data, noises were reduced effectively, and the overall reliability of condition monitoring data was also improved.
出处 《电力信息与通信技术》 2015年第6期8-14,共7页 Electric Power Information and Communication Technology
关键词 异常数据 OPTICS聚类 状态监测 数据挖掘 abnormal data OPTICS clustering condition monitoring data mining
  • 相关文献

参考文献9

二级参考文献112

共引文献418

同被引文献41

  • 1洪翠,邱仕达,高伟.CEEMDAN与GCN结合的配电变压器故障诊断[J].电子测量与仪器学报,2022,36(12):86-96. 被引量:9
  • 2YANG P, HUANG B. An outlier detection algorithm based on spectral clustering [C]// IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, December 19-20, 2008, Wuhan, China 507-510.
  • 3YANG J, WANG Y L. A new outlier detection algorithms based on Markov chain[R]. 2012.
  • 4SAHA B N, RAY N, ZHANG H. Snake validation: a PCA- based outlier detection method [J]. IEEE Signal Processing Letters, 2009, 16(6): 549-552.
  • 5ZHU J, QIU Y N, BETTS T R, et al. Outlier identification in outdoor measurement data-effects of different strategies on the performance descriptors of photovoltaic modules [ C]// 34th IEEE Photovoltaic Specialists Conference, June 7-12, 2009, Philadelphia, PA, USA.. 828-833.
  • 6MARION B, ADELSTEIN J. Long-term performance of the SERF PV systems[C]// National Center for Photovoltaics and Solar Program Review Meeting, March 24-26, 2003.
  • 7Denver, CO, USA 6p. CUETO J D, MCMAHON T J. Performance of single junction a Si modules under varying conditions in the field[C]// 26th IEEE Photovoltaic Specialists Conference, September 29- October 3, 1997, Anaheim, CA, USA 1205 1208.
  • 8ZHAO Y, LEHMAN B, BALL R, et al. Outlier detection rules for fault detection in solar photovoltaic arrays[C]// 28th Annual 1EEE Applied Power Electronics Conference and Exposition, March 17-21, 2013, Long Beach, CA, USA 2913-2920.
  • 9PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R]. 2013.
  • 10DROUET D, KOTZ S. Correlation and dependence [ M]. London, UK: Imperial College Press, 2001.

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部