期刊文献+

ARIMA模型在重庆市能源消耗量预测中的应用 被引量:1

Application of ARIMA Model in the Prediction of Energy Consumption of Chongqing
下载PDF
导出
摘要 能源是人类赖以生存和发展的重要物质基础,对经济的快速发展和人们生活水平的大幅度提高起着无可取代的作用,随着经济的发展人们对能源的需求日益增多,由于地球上的资源是有限的,对未来能源消耗量的准确预测显得尤为重要;运用ARIMA模型对《2013重庆市统计年鉴》中重庆市1981-2012年能源消耗量数据进行分析,结果显示:ARIMA(2,3,2)模型预测未来的结果较为准确,为重庆市资源消耗量提供了可靠的依据。 Resource is important basic material for human survival and development. It plays an irreplaceablerole in the rapid development of economy and greatly improving people's living standards. With the development ofeconomy, people's demand for energy is increasing, because the resources are limited on earth, therefore, it isparticularly important to accurately predict future energy consumption. This paper uses ARIMA model to analyze1981-2012 annual energy consumption data of Chongqing based on Chongqing Statistical Yearbook 2013. The resultshows that the predict of future energy consumption by ARIMA (2,3,2) model is more accurate, which providesreliable basis for resource consumption of Chongqing.
作者 李岩岩
出处 《重庆工商大学学报(自然科学版)》 2015年第8期54-60,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 重庆市教委科技项目(KJ1400613)
关键词 ARIMA模型 时间序列 能源消耗 预测 ARIMA model time series energy consumption prediction
  • 相关文献

参考文献6

二级参考文献29

共引文献170

同被引文献9

  • 1BRIAN O' Neil, DATON M.Global Demographic Trends and Future Carbon Emissions [ J ]. PNAS, 2010, 107 ( 41 ) : 17521-17526.
  • 2KHASHEI M, BIJARI M, ARDALI GAR. Improvement of Auto-regressive Integrated Moving Average Models Using Fuzzy Logic and Artificial Neural Networks [ J ]. Neurocomputing, 2009(72) :956-967.
  • 3KAASTRA, BOYD M. Designing a Neural Network for For- ecasting Financial and Economic Time-series [ J ]. Neurocomputing, 1996(10) :215-236.
  • 4DIORDANO F,LA ROCCA M,PERNA C.Forecasfing Nonlinear Time Series with Neural Network Sieve Bootstrap [ J ]. Comput Stat Data Anal,2007(51) :3871-3884.
  • 5ZHANG G P.Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model [ J ]. Nemputing, 20(13 (50) : 159-175.
  • 6肖枝洪,郭明月.时间序列分析与SAS应用[M].武汉:武汉大学出版社,2012.
  • 7CHEN Y, YANG B, DONG J, et al.Time-series Forecasting Using Flexible Neural Tree Model [ J ]. Inf Sci, 2005, 174 (3) :219-235.
  • 8王鑫,肖枝洪.基于干预模型与BP神经网络集成的GDP预测[J].统计与决策,2012,28(20):141-144. 被引量:17
  • 9唐建荣,陈实.基于随机森林方法的碳足迹及其影响因素研究[J].统计与信息论坛,2013,28(10):70-74. 被引量:10

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部