期刊文献+

大数据管理系统评测基准的挑战与研究进展 被引量:2

Challenges and Progress of Big Data Management System Benchmarks
下载PDF
导出
摘要 数据库评测基准在数据库发展历史中的作用不可替代,而大数据环境中传统评测基准不敷应用。因此,从评测基准3要素,即数据、负载、度量体系入手,研究具有高仿真性、可适配性、可测量性的大数据管理系统评测基准,对大数据管理系统的研发和应用系统选型至关重要。基于此,在简要分析评测基准的基本要素和大数据管理系统发展过程的基础上,重点分析大数据管理系统的基准评测需求与挑战,然后通过社交媒体分析型查询评测基准BSMA,探讨了面向应用的大数据管理系统基准评测的设计和实现问题。 Database benchmarking has stimulated the development of data management systems and technologies. In big data environments, benchmarking should be revisited. Therefore, research on benchmarks for big data management systems is a key problem for big data research and applications. Benchmark design can be achieved from three different perspectives, i.e. data, workload, and performance measurements. After the brief introduction to these three elements and the progress of big data management system research, the requirements and challenges to benchmarking big data management systems were analyzed. Through the introduction to a benchmark for analytical queries over social media data, named as BSMA, the issues of design and implementation of a benchmark for big data management systems were discussed.
出处 《大数据》 2015年第1期82-96,共15页 Big Data Research
基金 国家自然科学基金资助项目(No.61432006) 上海市教委科研创新重点项目(No.14ZZ045)~~
关键词 大数据管理系统 评测基准 数据生成 负载生成 性能度量体系 big data management system, benchmark, data generation, workload generation, performance measurement
  • 相关文献

参考文献6

二级参考文献55

  • 1Jensen C, Pedersen T, Thomsen C. Multidimensional databases and dsata warehousing [M/OL]. San Rafael: Morgan & Claypool Publishers, 2010: 1-6, 73-75. [2011- 06-20]. http://www. Morganelaypool. com/ doi/abs/10. 2200/ S00299ED1V01 Y201009DTM009.
  • 2TPC. TPC-H Benchmark standard specification, Version 2.14.2 [S/OL]. San Francisco: Transaction Processing Performance Council, 2011. [2011-06-20 ]. http://www. tpc. org/tpch.
  • 3TPC. TPC-DS Benchmark, Version 1. 0. 0d [S/OL]. San Francisco: Transaction Processing Performance Council, 2007. [2011-06-20]. http://www, tpe. org/ tpcds/tpcds, asp.
  • 4Vassiliadis P, Sellis T. A survey on logical models for OLAP database[J]. ACM SIGMOD Record, 1999, 28(4): 64-69.
  • 5APB-1 OLAP Benchmark, Release II [S/OL]. OLAP Council, 1998. [2011-06-20]. http://www, olapcouncil, org/ research/resrchly, htm.
  • 6Bischoff J, Alexander T. Data watehouse: Practical advice from the experts [M]. Upper Saddle River, New Jersey: Prentice Hall, 1997: 199-205.
  • 7Colliat G, OLAP, Relational, and Multidimensional DataBase System [J]. ACM SIGMOD Record, 1996, 25(3) 64-69.
  • 8Dittrich J P, Kossmann D, Kreutz A. Bridging the Gap between OLAP and SQL [C] //Proc of the 31st Int Conf on Very Large Data Bases. New York: ACM, 2005:1031-1042.
  • 9Microsoft. Hypercubes and Multicubes [OL]. [2011 -06-. 20]. http://msdn, microsoft, com/en us/library/ms725409 (v=vs. 85). aspx.
  • 10Gorbach I, Berder A, Melomeit E. Microsoft SQL Server 2008 Analysis Services Unleashed [M]. Indianapolis, Indiana:SAMS, 2008.

共引文献93

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部