期刊文献+

煤在增压流化床O_2/CO_2气氛下的燃烧及污染物排放特性(英文) 被引量:4

Combustion and pollutant emission characteristics of coal in a pressurized fluidized bed under O_2/ CO_2 atmosphere
下载PDF
导出
摘要 在空气和O2/CO2气氛下进行烟煤和褐煤的燃烧实验以考察压力和气氛对煤燃烧以及CO,NO,SO2析出过程的影响.采用排放峰值与排放总量2个指标来评估压力、气氛和温度等操作参数对煤在增压流化床富氧燃烧过程中NO及SO2生成的影响.结果表明:煤在增压富氧燃烧时CO,NO和SO2析出规律和增压空气燃烧时的规律相似,各组分气体均呈现单峰析出;O2/CO2气氛下,压力从0.1 MPa提高到0.7 MPa会抑制NO和SO2生成;随着温度的升高,NO和SO2的排放峰值和总量均增大,常压时两者增加的幅度要高于加压时. The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release process. Two indices, the maximum concentration and the total emission, were applied to quantitatively evaluate the influence of several different operating parameters such as pressure, atmosphere and temperature on the formation of NO and SO2 during coal combustion in the fluidized bed. The experimental results show that the releasing profiles of CO, NO and SO2 during coal combustion under a pressurized oxy- fuel atmosphere are similar to those under a pressurized air atmosphere, and the curves of measured gas components are all unimodal. Under the oxy-fuel condition, pressure increasing from 0.1 to 0.7 MPa can cause the inhibition of NO and SO2 emission. The elevation of temperature can lead to an increase in the maximum concentration and the total production of NO and SO2, and the increase under atmospheric pressure is higher than that under high pressure.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期188-193,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.51206023) the National Key Basic Research Program of China(973 Program)(No.2011CB707301-3) the Fundamental Research Funds for the Central Universities
关键词 增压富氧燃烧 流化床 SO2排放 NO排放 pressurized oxy-fuel combustion fluidized bed SO2 emission NO emission
  • 相关文献

参考文献1

二级参考文献21

  • 1朱志平.加压流化床的实验与模型研究[D].北京:中国科学院工程热物理研究所,2008.
  • 2Liop M F, Casal J. Incipient fluidization and expansion in fluidized beds operated at pressure and temperature [C]//Proceedings of the Eighth Engineering Foundation Conference on Fluidization , New York, 1996: 130-138.
  • 3Row P N, The effect of pressure on minimum fluidizationvelocity[J]. Chemical Engineering Science, 1984, 39(2): 173-174.
  • 4Chitester D C, Komosky R M. Characteristics of fluidization at high pressure[J]. Chemical Engineering Science, 1984, 39(2): 253-261.
  • 5Wen C Y, Yu H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12(3): 610-612.
  • 6Yang W C, Chitester D C, Kornosky R M, et al. A generalized methodology for estimating minimum fluidization velocity at elevated pressure and temperature [J]. AIChEJournal, 1985, 31(7): 1086-1092.
  • 7Sangeetha V, Swathy R, Narayanamurthy N, et al. Minimum fluidization velocity at high temperature based on Geldart powder classification[J]. Chemical Engineering Technology, 2000, 23(8): 713-719.
  • 8Jin Y, Zhu J, Wang Z. Fluidization engineering principles [M]. Beijing: TsinghuaUinversityPress, 1991: 21-30.
  • 9Formisani B, Girimonte R, Mancuso L. Analysis of the fluidization process of particle beds at high temperature [J]. Chemical Engineering Science, 1998, 53(5). 951-961.
  • 10Botterill J S M, Teoman Y, Fluid bed behavior at elevated temperature[J]. Powder Technology, 1982, 31(8): 101-118.

共引文献7

同被引文献22

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部