期刊文献+

A note on ribbon elements of Hopf group-coalgebras

关于Hopf群余代数ribbon元的注记(英文)
下载PDF
导出
摘要 Let G be a discrete group with a neutral element and H be a quasitriangular Hopf G-coalgebra over a field k. Then the relationship between G-grouplike elements and ribbon elements of H is considered. First, a list of useful properties of a quasitriangular Hopf G-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind of G-grouplike elements of H is defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the special G-grouplike elements defined above and ribbon elements is obtained. 设G是一个带有单位元的离散群,H是域k上的拟三角Hopf G-余代数.考虑了H的G-群像元和ribbon元之间的关系.首先证明了拟三角Hopf G-余代数以及它的Drinfeld元的一些重要性质.受到Hopf代数中群像元和ribbon元之间关系的启发,定义了一类特殊的G-群像元.最后利用Drinfeld元得到了所定义的特殊的G-群像元和ribbon元之间的一个一一对应关系.
机构地区 东南大学数学系
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期294-296,共3页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.11371088) the Natural Science Foundation of Jiangsu Province(No.BK2012736) the Fundamental Research Funds for the Central Universities(No.KYZZ0060)
关键词 quasitriangular Hopf G-coalgebra G-grouplikeelement ribbon element Drinfeld element 拟三角Hopf G-余代数 G-群像元 ribbon元 Drinfeld元
  • 相关文献

参考文献9

  • 1Sweedler M. Hopf algebras [ M]. New York: Benja- min, 1969.
  • 2Montgomery S. Hopf algebras and their actions on rings [ M ]. Rhode Island: American Mathematical Society, 1993.
  • 3Reshetikhin N Y, Turaev V G. Ribbon graphs and their invariants derived from quantum groups[ J ]. Comm Math Phys, 1990, 127(1): 1-26.
  • 4Kauffman L H, Radford D E. A necessary and sufficient condition for a finite-dimensional Drinfel' d double to be a ribbon Hopf algebra [J]. J Algebra, 1993, 159( 1 ) : 98 - 114.
  • 5Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories[ EB/OL ]. ( 2000 ) [ 2013-07- 01 ]. http ://arxiv. org/abs/math/0005291.
  • 6Virelizier A. Hopf group-coalgebras [ J ] J Pure Appl Algebra, 2002, 171( 1 ) : 75 - 122.
  • 7Virelizier A. Graded quantum groups and quasitriangular Hopf group-coalgebras [ J].Comm Algebra, 2004, 33 (9) : 3029 - 3050.
  • 8Wang S H. Group entwining structures and group coalge- bras Galois extensions [ J].Comm Algebra, 2004, 32 (9) : 3417 -3436.
  • 9Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras [ J]. Comm Algebra, 2004, 32 (9) : 3437 -3458.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部