期刊文献+

圆柱阵列微通道中复杂流体的流动行为研究 被引量:1

Study on Flows of Complex Fluids in Microchannels with Pillar Array
下载PDF
导出
摘要 具有圆柱阵列的微通道可利用法琳效应产生的无细胞血浆层(尾迹)来放大血液等复杂流体的流动行为,从而更好地操控流体或简便地预测流体的特性。以血液作为典型的复杂流体,系统考察了静态和动态血细胞浓度与减阻剂等因素对圆柱阵列微通道中尾迹宽度和血细胞分布的影响规律。血液样品流经圆柱阵列后产生尾迹宽度随着血细胞浓度的增大而减小甚至消失。在考察的1.7%-70%血细胞浓度范围内,可根据两者的定量关系由尾迹宽度得出血细胞浓度的大小。微量聚环氧乙烷(PEO)减阻剂的加入使粘弹性作用起主导作用,血细胞向壁面发生迁移,并且出现复杂的分层分布。研究结果有望为微通道中非牛顿流体等复杂流体各组分的分离和操控提供新的思路。 The flowing behaviors of the complex fluids such as blood sample may be amplified through cell-free plasma layer(i.e. the wake) induced by F?hr?us-Lindqvist effect in the microchannels with pillar array, which may better manipulate the fluids and easily predict the fluid property. Taking the diluted blood as an example, the effects of factors such as static and dynamic cell concentration as well as the addition of drag reducer on the wake width and the distribution of blood cells in the microchannels are systematically investigated in the study. The wake width of blood sample generated along the pillar array decreases and even disappears with the increasing cell concentration. In the investigated cell concentration range of 1.7%- 70%,the cell concentration value can be determined by the wake width according to their quantitative relationship. Compared with the dominant lift force in the blood sample without polyethylene oxide(PEO), the viscoelastic effect becomes dominant in that with trace PEO. The blood cells migrate to channel walls and the complex layered distribution manifests. The results will provide the new ideas for component separation and manipulation of complex fluids such as non-Newtonian fluid in the microchannels.
出处 《过滤与分离》 CAS 2015年第2期1-5,共5页 Journal of Filtration & Separation
基金 教育部"长江学者和创新团队发展计划"创新团队资助项目(IRT1163) 高分子材料工程国家重点实验室自主研究课题-团队项目(sklpme2014-1-01)资助项目
关键词 微流控 复杂流体 法琳效应 水力升力 非牛顿流体 microfluidics complex fluids fåhræus-lindqvist effect hydrodynamic lift force non-newtonian fluid
  • 相关文献

参考文献17

  • 1张丽莉,徐继润.氧化铁-水悬浮液的流变性研究[J].过滤与分离,2007,17(1):8-10. 被引量:3
  • 2E. Brown, H.M. Jaeger. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming.[J]. Reports on progress in physics. Physical Society (Great Britain), 2014, 77(4):046602.
  • 3E. Brown, N.A. Forman, C.S. Orellana, et al. Generality of shear thickening in dense suspensions.[J]. Nature Mate- rials, 2010, 9:220-224.
  • 4褚良银,汪伟,巨晓洁,谢锐.微流控法构建微尺度相界面及制备新型功能材料研究进展[J].化工进展,2014,33(9):2229-2234. 被引量:16
  • 5P. Nghe, E. Terriac, M. Schneider, et al. Microfluidics and complex fluids.[J]. Lab on a Chip, 2011,11:788-794.
  • 6D.J. Beebe, G.A. Mensing, G.M. Walker. Physics and ap- plications of microfluidics in biology[J]. Annual Review of Biomedical Engineering, 2002,4:261-286.
  • 7C. Hirata, H. Kobayashi, N. Mizuno, et al. Effect of nor- mal human erythrocytes on blood rheology in microcircu- lation[J]. Osaka City Medical Journal, 2007,53(2):73.
  • 8N. Korin, M. Kanapathipillai, B.D. Matthews, et al. Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels[J]. Science, 2012,337(6095): 738-742.
  • 9M.V. Kameneva. Microrheological effects of drag-reduc- ing polymers in vitro and in vivo[J]. International Journal of Engineering Science, 2012,59:168-183.
  • 10J. Brands, D. Kliner, H.H. Lipowsky, et al. New Insights into the Microvascular Mechanisms of Drag Reducing Polymers: Effect on the Cell-Free Layer[J]. Plos One, 2013,8(10).

二级参考文献61

  • 1张强,张彰.纳米氧化铁粉体分散技术研究进展[J].化学工业与工程技术,2004,25(5):41-44. 被引量:2
  • 2X.Huang.Intersection of isotherms for phosphate adsorption on hematite[J].Journal of Colloid and Interface Science 271,2004,296-307.
  • 3Garcell L,Morales M P.Interfacial and Rheological Characteristics of Maghemite Aqueous Suspensions[J].Journal of Colloid and Interface Science 205,1998,470-475.
  • 4Ramos-Tejada M M,Ontiveros A.Interfacial and rheological properties of humic acid/hematite suspensions[J].Journal of Colloid and Interface Science 268,2003,85-95.
  • 5Zhonghua Pan,Somasundaran P.Interactions of cationic dendrimers with hematite mineral[J].Colloids and Surfaces A:Physicochem.Eng.Aspects 238,2004,123-126.
  • 6Frederic Boschini,Rulmonta A.Colloidal stability of aqueous suspensions of barium zirconate[J].Journal of the European Ceramic Society 25,2005,3195-3201.
  • 7Whitesides G M.The origins and the future of microfluidics[J].Nature,2006,442:368-373.
  • 8Daw R,Finkelstein J.Insight:Lab on a chip[J].Nature,2006,442:367-418.
  • 9van den Berg A,Craighead H G,Yang E From microfluidie applications to nanofluidic phenomena[J].Chemical Society Reviews,2010,39:899-1217.
  • 10Atencia J,Beebe D J.Controlled microfluidic interfaces[J].Nature,2005,437:648-655.

共引文献17

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部