期刊文献+

带有外力项和真空的可压缩的Navier-Stokes方程的解的正则性 被引量:1

Regularity of the solutions for compressible Navier-Stokes equations with external force and vacuum
下载PDF
导出
摘要 在压力和和粘性系数是密度的一般函数的情况下,研究了可压缩的Navier-Stokes方程的解在H4空间中的存在性和渐近性,利用Poincare不等式,Holder不等式,Cauchy不等式等一些不等式得到了弱解的先验估计。 In the paper, we discusses the existence and asymptotic behavior of solutions to compressible Navier-Stokes equations in spaceH4 under pressure and viscosity coefficient is generally a function of density. Using the Poincare inequality, Holder inequality, Cauchy inequality to obtain the prior estimate of the weak solutions .
出处 《贵州师范大学学报(自然科学版)》 CAS 2015年第3期49-53,70,共6页 Journal of Guizhou Normal University:Natural Sciences
基金 陕西省教育厅2014年科学研究项目(14JK1841) 陕西省自然科学基础研究计划项目(2014JM2-1003)
关键词 NAVIER-STOKES方程 粘性依赖密度 整体存在性 外力项 Navier-Stokes equation density-dependent viscosity global existence external force
  • 相关文献

参考文献13

  • 1Qin Yuming, Lan Hang. Regularity of 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity [ J ]. J Differenital Equations, 2008,245 ( 12 ) : 3956-3973.
  • 2Wen Huanyao, Zhu Changjiang. Global classical large so- lutions to Navier-Stokes equations for viscous compressi- ble and heat-conducting fluids with vacuum[ J ]. SIAM J Math Anal,2013,45(2) :431-468.
  • 3Ding S, Wen H, Yao L,et al. Global spherically symmet- ric classical solution to compressible Navier-Stokes equa- tions with large initial data and vacuum[ J]. SIAM J Math Anal, 2012,44 (2) : 1257-1278.
  • 4Okada M, Matusunecasova S, Makino T. Free boundary problem for the equations of one dimensional motion of compressible gas with density-dependent viscosity [ J ]. Ann Univ Ferrara Sez,2002,48( 1 ) :1-20.
  • 5Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum [ J ]. Commum Math Phys ,2002 ,230 ( 2 ) : 329-363.
  • 6Jiang S, Xin Z, Zhang P. Global weak solutions to 1D com- pressible isentropic Navier-Stokes equations with density- dependent viscosity [ J ]. Appl A Methods hal, 2005,12 (3) :239-252.
  • 7Yang T, Zhao H. A vacuum problem for the one-dimen- sional compressible Navierr-Stokes equations with density- dependent viscosity [ J ]. J Differential Equations, 2002, 184( 1 ) :163-184.
  • 8Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension [ J ]. Pure Appl Anal, 2004,3(4) :675-694.
  • 9Fang D, Zhang T. A note on compressible Navier-Stokes e- quations with vacuum state in one dimension[ J]. Nonlin- ear Anal,2004,58(5 ) :719-731.
  • 10Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier- Stokes equations [ J ]. SIAM J MATH ANAL, 2008,39 (4) :1344-1365.

二级参考文献16

  • 1Ding Shijin, Wen Huanyao, Yao Lei, et al. Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum [J]. SIAM Journal on Mathematical Analysis, 2012 (44): 1257-1278.
  • 2David Hoff, Mohammed Ziane. Finite-dimensional attractors and exponential attractors for the Navier-Stokes equations of compr- essible flow[J]. SIAM J Math Anal, 2003, 34 (5):1040-1063.
  • 3Okada M. Free boundary value problems for the equation of one-dimensional motion of viscous gas[J]. Japan J Indust Appl Math, 1989,6: 161-177.
  • 4Guo Z, Jiu Q, Xin Z. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients [J]. SIAM J Math Anal, 2008,39 (5) : 1402-1427.
  • 5Jiang S, Xin Z, Zhang P. Global solutions to 1D compressible isentropy Navier-Stokes with density--dependent viscosity [J] Methods and Applications of Analysis, 2005, 12 (3) : 239-252.
  • 6Yang T, Zhao H. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity[J]. J Differential Equations, 2002, 184: 163-184.
  • 7Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum[J]. Commu Math Phys, 2002, 230: 329-363.
  • 8Zhang Ting, Fang Daoyuan. Global behavior of compressible Navier-Stokes equations with degenerate viscosity coefficient[J]. Archive for Rational Mechanics and Analysis, 2012, 4: 223-253.
  • 9陈伟,张凌.粘性依赖于密度的一维流体力学方程[J].龙岩学院学报,2007,25(6):29-32. 被引量:2
  • 10An LiKun.Global dynamics of the viscous Cahn-Hilliard equation[J].Journal of Lanzhou university (natural sciences),2000,36(5):17-23.

共引文献5

同被引文献10

  • 1ZHANG Y H,TAN Z.On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow[J].Math Meth Appl Sci,2007,30:305-329.
  • 2GAO Z S,TAN Z.A global existence result for the compressible Navier-Stokes-Poisson equations in three and higher dimensions[J].Ann Polon Math,2012,105(2):179-198.
  • 3DUCOMET B,ZLOTNIK A.Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system[J].Appl Math Lett,2005,18:1190-1198.
  • 4HAO C,LI H L.Global existence for compressible NavierStokes-Poisson equations in three and higher dimensions[J].J Differential Equations,2009,246:4791-4812.
  • 5LI H L,MATSUMURA A,ZHANG G J.Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3[J].Arch Ration Mech Anal,2010,196:681-713.
  • 6ZHANG G J,LI H L,ZHU C J.Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in R3[J].J Differential Equations,2011,250:866-891.
  • 7FEIREISL Eduard,NOVOTNY Antonín.Singular limits in thermodynamics of viscous fluids[M].Basel:Basel Birkhauser-Verlag,2009.
  • 8STEIN E M.Singular integrals and differential properties of functions[M].Princeton:Princeton University Press,1970.
  • 9BLADEL J V.On Helmholtz's Theorem in Finite Regions[M].Madison Wisconsin:Midwestern Universities Research Association,1958.
  • 10孔春香.带有外力项的可压缩的Navier-Stokes方程的一个注记[J].贵州师范大学学报(自然科学版),2014,32(5):73-75. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部